Supplementary material

Рис. **S1.** Элементарная ячейка $Bi_2BaNb_2O_9$ (a), $Bi_2SrNb_2O_9$ (b), $Bi_2BaNb_2O_9$ (c). **Fig. S1.** Unit cell of $Bi_2BaNb_2O_9$ (a), $Bi_2SrNb_2O_9$ (b), $Bi_2BaNb_2O_9$ (c).

5µm

Fe Fe Nb 1 1 Element Line type Atom., % Wt., % 0 K Series 71.48 23.50 Ca к 5.16 4.25 Nb 11.60 22.16 Bi Fe M K 11.63 49.95 0.12 0.13 Total 100.00 100.00

N Nb sigma wt.,% 0.32 0.08 0.25 0.35 0.08

с

b

Рис. 52. Микрофотографии поверхности и ЭДС спектры $Bi_2CaNb_{2-2x}Fe_{2x}O_{9-\delta}$ при x = 0.015 (a), 0.03 (b) и 0.04 (c). **Fig. 52.** Surface photomicrographs and energy dispersion spectrum of $Bi_2CaNb_{2-2x}Fe_{2x}O_{9-\delta}$ at x = 0.015 (a), 0.03 (b) and 0.04 (c).

Zhuk et al.

Табл. \$1. Эффективный магнитный момент атомов железа в Bi₂CaNb_{2-2x}Fe_{2x}O_{9- δ} при $x \rightarrow 0$. **Table \$1.** Effective magnetic moment of iron atoms in Bi₂CaNb_{2-2x}Fe_{2x}O_{9- δ} at $x \rightarrow 0$.

Т, К	90	140	200	260	320
$\mu_{_{9}\varphi}(Fe), ME / \mu_{_{ef}}(Fe), \mu B$	6.06	6.52	6.75	6.92	6.97

Табл. 52. Результаты расчета распределения атомов железа в твердых растворах $Bi_2CaNb_{2-2x}Fe_{2x}O_{9-\delta}^{-1}$. **Table 52.** Calculated data on iron atom distribution in the solid solutions $Bi_2CaNb_{2-2x}Fe_{2x}O_{9-\delta}^{-1}$.

						$\chi_{_{ m skcn(reop)}}$ ·10 ³ , см ³ /моль / $\chi_{_{ m exp(calc)}}$ ·10 ³ , emu/mol			
x	$a_{ m Fe(III)}^{ m MOH}$ $a_{ m Fe(III)}^{ m mon}$	$a_{ m Fe(III)}^{ m dum(a)} \ a_{ m Fe(III)}^{ m dim(a)}$	$a_{ m Fe(III)}^{ m dum(\varphi)} \ a_{ m Fe(III)}^{ m dim(f)}$	$a_{\rm Fe(III)}^{ m Tpum(a)}$ $a_{\rm Fe(III)}^{ m trim(0)}$	$a_{\rm Fe(III)}^{ m Tpum(\phi)}$ $a_{\rm Fe(III)}^{ m trim(f)}$	140 K	200 K	260 K	320 K
0.000	0.360	0.090	0.400	0.000	0.100	38.5 (43.7)	28.5 (30.4)	23.0 (23.2)	19.0 (18.6)
0.003	0.310	0.190	0.360	0.040	0.080	33.8 (37.0)	25.7 (25.9)	20.7 (19.9)	17.4 (16.1)
0.007	0.270	0.250	0.340	0.060	0.060	29.8 (33.6)	22.5 (23.6)	18.1 (18.2)	15.1 (14.8)
0.010	0.255	0.290	0.330	0.065	0.035	28.7 (31.3)	21.7 (22.1)	17.4 (17.1)	14.6 (13.9)
0.015	0.250	0.320	0.325	0.070	0.015	26.3 (29.2)	20.0 (20.7)	16.2 (16.0)	13.6 (13.1)
0.020	0.240	0.360	0.310	0.075	0.000	24.6 (26.8)	18.6 (19.0)	15.0 (14.9)	12.5 (12.2)
0.030	0.230	0.405	0.280	0.085	0.000	21.5 (23.9)	16.6 (17.2)	13.5 (13.5)	11.4 (11.1)
0.040	0.205	0.450	0.250	0.095	0.000	19.1 (21.8)	14.9 (15.7)	12.2 (12.4)	10.4 (10.3)
0.050	0.195	0.485	0.210	0.110	0.000	17.8 (19.6)	14.0 (14.2)	11.6 (11.3)	9.9 (9.5)

Примечание: 1 — $a_{\text{Fe}(III)}^{\text{мон}}$ – доля мономеров; $a_{\text{Fe}(III)}^{\text{дим}(a)}$ и $a_{\text{Fe}(III)}^{\text{дим}(\phi)}$ — доля димеров с антиферромагнитным и ферромагнитным и ферромагнитным и ферромагнитным типом обмена; $a_{\text{Fe}(III)}^{\text{трим}(a)}$ и $a_{\text{Fe}(III)}^{\text{трим}(\phi)}$ – доля тримеров с антиферромагнитным и ферромагнитным типом обмена.

Footnote: $1 - a_{\text{Fe(III)}}^{\text{mon}}$ and $a_{\text{Fe(III)}}^{\text{dim(a)}}$, $a_{\text{Fe(III)}}^{\text{trim(0)}}$, $a_{\text{Fe(III)}}^{\text{trim(f)}}$ are portions of monomers, dimers and trimers of iron (III) atoms with ferro- and antiferromagnetic types of interactions.

Рис. 53. Зависимость долей димеров Fe(III)-O-Fe(III) с антиферромагнитным $a_{\text{Fe(III)}}^{\text{дим(a)}}$ (1) и ферромагнитным типом обмена $a_{\text{Fe(III)}}^{\text{дим(a)}}$ (2), долей тримеров с антиферромагнитным $a_{\text{Fe(III)}}^{\text{трим(a)}}$ (4) и ферромагнитным типом обмена $a_{\text{Fe(III)}}^{\text{трим(a)}}$ (5) и мономеров $a_{\text{Fe(III)}}^{\text{мон}}$ (3) от содержания атомов железа в Bi₂CaNb_{2-2x}Fe_{2x}O₉₋₆.

Fig. 53. Dependence of portions of dimers Fe(III)-O-Fe(III) with antiferromagnetic $a_{\text{Fe(III)}}^{\dim(a)}$ (1) and ferromagnetic $a_{\text{Fe(III)}}^{\dim(f)}$ (2) type of exchange, of portions of trimers with antiferromagnetic $a_{\text{Fe(III)}}^{\dim(m)}$ (4) and ferromagnetic $a_{\text{Fe(III)}}^{\dim(f)}$ (5) type of exchange, of Fe (III) monomer portions $a_{\text{Fe(III)}}^{\min(n)}$ (3) on concentration of iron atoms in Bi₂CaNb_{2-2x}Fe_{2x}O_{9-\delta}.