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Polycrystalline metals have flow stress two to three orders of magnitude lower than the theoretical shear strength estimated by
Frenkel model. This significant strength difference is primarily due to the presence of defects, such as dislocations and grain
boundaries. However, it was experimentally found that defect-free nanoscale objects (whiskers, nanopillars, etc.) can exhibit
strength close to the theoretical limit. With the development of nanotechnology, interest in the study of the theoretical strength
of metals and alloys has grown significantly. It is important to find reliable criteria of lattice instability when homogeneous
nucleation of defects begins during deformation of an ideal crystal lattice. Note that the Frenkel estimation does not take
into account thermal vibrations of atoms and attempts are being made to take into account the effect of temperature on the
theoretical strength of defect-free crystals. In this paper, using molecular dynamics simulation, we study shear deformation
in the direction of (111)[112] for single crystals of copper and aluminum in the temperature range from 0 to 400 K. Lattice
instability was evaluated using two criteria: (i) macroscopic criterion, which is related to the loss of positive definiteness of
the stiffness tensor, and (ii) a microscopic criterion related to the formation of a stacking fault, which leads to a drop of the
applied shear stress. It was demonstrated that both criteria are consistent at low temperatures, but the macroscopic criterion
is less reliable at higher temperatures.
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Meranisl B monukKpuctaumdeckoit ¢opme o6majaloT HampsDKEHMEM TeYeHWs] Ha [iBa-TpU IOps/iKa HIDKE TeopeTu-
YeCcKOro Ipefieia IIPOYHOCTH, oleHeHHOro O®penxeneM. CTONMb 3HAUUTEIbHOE CHIDKEHME IIPOYHOCTY OOYCIOBIEHO
Ha/IM4yeM B MeTa/UlaX HedeKTOB KPUCTAUIMYECKON CTPYKTYpBI, IPeXfAe BCEro, NUCIOKALWII U TIpaHMI, 3epeH.
OKCIIepYIMEeHTA/IbHO YCTAHOBJIEHO, YTO Oe3nedeKTHble HaHOpa3MepHble OOBEeKThl (HaHOBOJIOKHA, HAaHOCTONOMKY U Ip.)
[IOKA3bIBAIOT IIPOYHOCTb ONM3KYI0 K TeopeTudecKoMmy Inpegmeny. C pasBUTMEM HAHOTEXHOJIOIMII MHTEpeC K M3YyYEHUIO
TEOPETUIECKON IIPOYHOCTU METAJIOB U CIUTABOB 3HAYUTEIBHO BBIPOC. BaXKHBIM SIB/ISIETCS BOIPOC KPUTEPUST JOCTVDKEHNUS
TEOPETUIECKOTO Mpefiefia IIPOYHOCTY IPU TOMOTEHHOM 3apoXKjeHuu fnedekToB B Xofie nedhOpMUPOBAHUS MUAEATBHON
KpUCTa/UINYecKoy pemeTky. OTMeTnM, 4To orleHKa OpeHKesisa He yYUThIBAET TEIUIOBBIX KOJIeOaHNUIT aTOMOB, 1 B HACTOsIIee
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BpeMsI IPeANpUHMMAIOTCS IOIBITKM y4eTa BAMSHUS TEeMIIEPaTypbl Ha TEOPETNYeCKyl MPOYHOCTb 6espmedeKTHBIX
KpuCcTa/UIOB. B aHHOI paboTe, C TOMOIIBIO METOA MOJIEKY/LIPHON AVTHAMMK, M3y4ae TcA e OpMalyis CABATA B HAIIPAaBIeHNN
(111)[112] MOHOKPUCTA/ITIOB MeY ¥ IIOMUHUS B MHTepBane Temneparyp ot 0 go 400 K. CpaBHMBAOTCs jBa KpUTEpUs
HEYCTOMYMBOCTU yHpyroro pedopmupoBanud: (i) MaKpOCKOINMYECKUIT, OTC/ICKMBAIOIVI IIOTOXUTEIbHYIO OIpefe-
JIEHHOCTD TEH30pa XXeCTKOCTH, 1 (ii) MUKPOCKOIMYIeCKMIT KPUTEPHIT, OTCIeXMBAIOLINIT 06pa3oBaHme fedheKTa yIaKOBKI,
KOTOpOe IPUBOAUT K PE3KOMY IA[IeHNI0 HAIPSDKEHNUs CABUrA. IIpoeMOHCTpUPOBAHO, 9TO 06a KPUTEPUs COINACYIOTCS
IIpY HU3KOI TeMIIEPATYpPe, HO MAKPOCKOIMYECKIIT KPUTEPUI AB/IAETCA MEHEE Hale)KHbIM IIPY BBICOKUX TeMIIepaTypax.

KnroueBbie cnmoBa: TeOpeTNIECKaA IIPOYHOCTD, KpMTCpI/If/I yCTOf/I‘{I/IBOCTI/I, MeJib, aTIOMUHUI.

1. Introduction

It is well known that the crystal lattice defects, especially
dislocations and grain boundaries, are responsible for a
striking difference (several orders of magnitude) between
the theoretical strength of crystals, estimated by Frenkel, and
the strength of real construction and functional materials.
However, the strength of whiskers measured in the 1950s
turned out to nearly reach the theoretical Frenkel limit [1].
Also, experiments on nano-wire bending and nano-pillar
compression demonstrated their extreme strength when the
dislocations in the sample were absent, scarce or immobile.
For example, the yield strength of a gold nanowire with
a diameter of 40 nm was estimated to be 5.6 GPa [2],
the Frenkel theoretical strength being 4.1-6.1 GPa. The
critical shear stress of aluminum was estimated in nano-
indentation experiments equal to 2.3 GPa [3], which is close
to the theoretical strength of 2.84 GPa [4]. Experiments on
uniaxial compression of nanoscale samples showed that the
yield strength increases with the decrease of its diameter
according to the power law csy~al*z in the case of presence
of dislocations [5-9], while in their absence the material
yield strength does not depend on the sample diameter and
is close to the theoretical limit [10-13].

It is known that certain optical, electromagnetic or
acoustic properties of a crystal continuously change with
the increase of applied elastic deformation. Since a larger
elastic deformation can be applied to the nanoscale crystals
compared to the conventional materials, the available room
for the property tuning is expanded as well.

In practice, it is necessary to understand the limits of
mechanical stability of nanocrystals subjected to elastic
deformation. As experimental investigation is very labour-
and time-consuming, an alternative is to perform computer
simulations using various approaches, such ab initio or
molecular dynamics. In the first works dedicated to this
problem, the main goal was to determine the theoretical
strength [14]. Nowadays, the research is focused on the
failure of nanocrystals at applied stress below the theoretical
limit, the possible reasons being the effect of twins and grain
boundaries [15,16] or the sample crystallographic orientation
with respect to the loading direction [17-20]. The effect
of compression and tension on the theoretical strength of
covalent crystals was also studied [21-23].

The effect of temperature on the theoretical strength of
aluminium (Al) and copper (Cu) crystals was studied with
the help of molecular dynamics (MD) [24], demonstrating
a linear decrease in the critical shear stress with temperature.
The moment of the crystal lattice stability loss under applied
shear deformation was determined by a sudden structure

transformation, corresponding to the stacking fault formation,
which is also reflected in the stress-strain curve as a stress drop.

The present paper explores another, macroscopic, criterion
of mechanical stability of lattice subjected to deformation,
which is based on the positive definiteness of the stiffness
tensor and was successfully tested for silicon [25], where a
good match with the results of ab initio calculations at 0 K
was demonstrated. Here the applicability of this criterion is
tested at elevated temperatures up to 400 K.

2. Description of the computational
model and stability criteria

The Cu and Al single crystals were studied here as the most
characteristic representatives of fcc metals with low and high
stacking fault energy, respectively.

Our MD calculations were performed with the interatomic
potentials based on the embedded-atom method (EAM),
commonly used in MD simulations of metallic crystals.
In particular, the potential by Mishin et al. was applied in
calculations of Cu [26], and the potential by Zope and Mishin
[27] was chosen for Al, according to the comparative study [28].

The computational cell initially had a rectangular shape
in which the crystallographic directions [112], [110], and
[111], were oriented along x, y, and z axes, respectively.
The computational cell size effect was studied and the cell
containing 1296 atoms was adopted in simulations, since
further increase of the cell did not affect the results [29].
Periodic boundary conditions were imposed in three
perpendicular directions. The simulations were performed
with the use of MDSPASS MD package developed in the
University of Tokyo.

Simple shear T_ was applied in the direction of the easiest
slip (111)[112]with a constant rate of 50 MPa/ps. The time
step in the MD simulations was set equal to 1 fs, which is
much smaller than the typical period of atomic thermal
oscillations. Prior to application of the shear stress the lattice
relaxation during the first 10 ps was performed at every given
temperature. The stress was controlled using the Parinello-
Raman method [30].

Hooke’s law for small strain, o, =C,y,, establishes the
linear relationship between the tensors of stress o, and strain
vy, Via the elastic constant tensor C,, . Not all components of
these tensors are independent due to the tensor’s symmetry.
Thus, Hooke's law can be rewritten in a clearer form using the
Voigt notation, reducing the rank of tensors.

0w = vasv ( 1)

where g, =y, for normal strain components (v=1, 2, 3) and
g, =2y, for shear strain components (v=4, 5, 6).
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However, linear relationship (1) holds only for small
elastic strains, whereas at larger elastic strains the tensor C
should be substituted with the tensor of stiffness B, whose
components are not constant [25]

— ac$W
" Ok,
where v and w are integers from 1 to 6.

Let us describe the numerical procedure for calculation of
matrix B during MD simulation. In the course of MD run, the
components of stiffness tensor were calculated every 100 fs by
applying a small extra strain component ¢/ =—¢, =¢ =10~
and tracking the consequent variation of stress tensor
components o, and o . Then, the derivative in Eq. (2) was
estimated as

)

" Ok, 2e, G)
The following two criteria of the mechanical

stability of a lattice are compared in the present work:
(i) macroscopic one, which is defined as the positive
definiteness of the stiffness tensor B [25], and (ii) microscopic
criterion, corresponding to a violation of atomic order in
the crystal due to a stacking fault formation, which can be
identified on a macroscopic scale via sudden drop of the
applied shear stress. To detect the positive definiteness
of matrix B, Sylvester’s criterion was used: if all of the
leading principal minors are positive then the structure
is mechanically stable. A leading principal minor is the
determinant of a smaller matrix, located in the upper-left
corner of the matrix in question. The six leading minors
calculated from the 1x1,2x2, ..., 6 x 6 corner matrices of the
6 X 6 matrix B, are denoted as M, M., ..., M, correspondingly.
Note that M,=B,, M,=B, B,, - B, B, , and so on.

11’ 11722

3. Results and discussion

Fig. 1 shows the crystal structure in projection on xz
plane before deformation (a); during elastic deformation
before the stability loss (b); and after the stability loss with
a stacking fault formation and sudden drop of the shear
stress (c). Open and filled circles show atoms belonging to
different atomic planes parallel to the image plane (xz plane).

A series of simulations in the temperature range from 0
up to 400 K for both Al and Cu was performed. It is important
to know which leading minors reach zero first with the
increase of strain, indicating that the Sylvester’s criterion is
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not satisfied. All the leading minors of matrix B are plotted in
Fig. 2 for the minimal and the maximal studied temperatures,
i.e., for 0 K (left panels) and 400 K (right panels). The top
(bottom) panels give the results for Al (Cu). Lines of different
colour are used for M ,...,M,, according with the legend. Not
only do the absolute values of leading minors M ,...,M_ differ
by orders of magnitude, but they are expressed in different
units, powers of GPa. That is why in Fig. 2, the leading minors
are normalized to their values at zero strain. The curves are
cut at the points of the stress drop (critical points according to
the microscopic criterion), which is related to the formation
of a stacking fault in the deformed crystal.

From Fig. 2 one can see that the normalized values of M,
and M, decrease faster compared to other leading minors
in all four panels thus determining the violation of the
Sylvester’s criterion. For this reason, in the rest of this paper,
we rely on these two leading minors in identification of the
lattice stability.

Next, in Fig. 3 by dashed lines we show the evolution
of M, (top panels) and M, (bottom panels) with increasing
shear strain for temperatures T'=0, 100, 200, 300, and 400 K
and for Al (left panels) and Cu (right panels). In addition,
the evolution of shear stress with increasing shear strain is
shown by the solid lines, in order to compare the two criteria
of lattice stability. Note that for Al at 0 K the stress drop is
observed at the value of shear strain when both M_ and M,
vanish which means that the macroscopic Sylvester’s criterion
and the microscopic criterion agree very well in this case. The
same can be said about Cu at 0 K, since the drop of the shear
stress takes place when M_ and M, decrease to nearly zero
positive values. As temperature increases, the final values
of the leading minors become positive; so the stacking fault
is formed before the violation of the Sylvester’s criterion. It
can be explained by the thermally-assisted formation of
the stacking fault, so that the complete macroscopic loss of
lattice stability is not required; a local fluctuation of atomic
arrangement can accidentally trigger the stacking fault
formation.

The curves for Cu and Al in Fig. 3 behave differently:
the values of both considered minors for Cu show much less
sensitivity to temperature variation than for Al. At the same
time, the critical stress and strain decrease with increase
in temperature. With the temperature increasing from 0 to
400 K, the decrease in the critical shear stress for Al and Cu is
36% and 29%, respectively.

Fig. 1. Crystal structure projected on xz plane before the application of shear strain (a); during elastic shear deformation, before the loss of
lattice stability (b); after the loss of lattice stability with the stacking fault formation (c). Crystallographic directions [112], [110], and [111],
are oriented along x, y, and z axes, respectively. Atoms belonging to different atomic planes parallel to the xz plane are shown by open and

filled circles.
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Fig. 2. (Color online) The evolution of the leading principal minors of matrix B under applied shear strain for Al (upper panels) and Cu
(bottom panels) at the minimal (left columns) and the maximal (right columns) tested temperatures. The values of B, and normalized to
their values at zero strain. The curves are coloured according to the legend.
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Fig. 3. (Color online) The evolution of M, (top panels) and M, (bottom panels) is shown by the dashed lines, while the evolution shear stress
with solid lines. Results for temperatures T'= 0, 100, 200, 300, and 400 K are presented for Al (left panels) and for Cu (right panels).
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4. Conclusion

In frame of the molecular dynamics method, the
microscopic and macroscopic criteria of lattice stability
are compared for two defect-free fcc metals (Al and Cu)
subjected to shear deformation at different temperatures.
The positive definiteness of the stiffness matrix is confirmed
to be a macroscopic criterion for the lattice stability at 0 K.
At elevated temperatures the thermally assisted nucleation
of lattice defects leads to an early loss of lattice stability,
while the stiffness matrix is still positively definite. It is also
shown that, as expected, the increase of temperature leads
to a decrease of critical stress and critical strain for the two
studied metals.
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