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In beam-like structures and granular media the rotations are usually quite small. Linear generalized continuum models were 
developed and successfully applied for the modelling of such deformations. But, they do not describe full continuous rotations. 
The development of generalized continuum models describing not only small oscillations, but full continuous rotations as well 
is quite challenging and an open problem. This manuscript extends the results by Vasiliev A. A, Dmitriev S. V. Discrete and 
Multifield Models of a Cosserat Chain: One-Period and Two-Period Solutions. Russian Physics Journal. 59, 961 (2016). We 
derive and analyse three types of discrete models: i) nonlinear springs model, ii) linearized model with respect to displacement 
of particles and full sine-dependence of the angle of rotations; and iii) linearized one with respect to both, displacements and 
rotations. The latter is the discrete analogue of the classical Cosserat model. As a test example, we consider a chain of finite 
size particles with fixed boundaries in viscous medium with an applied momentum load to the central particle. By employing 
continuous Cosserat model, we find an approximated stationary solution for the full and reduced discrete Cosserat models. 
Numerically calculated static deformations of the chain under small momentum loads by using all three models are very 
similar. Under strong load localized rotation is observed. It is not described by the linear model (iii). Our results indicate the 
possibility of modelling of localized rotations in the nonlinear model (i) and the model containing nonlinear sine-dependence 
of the angle of rotation (ii).
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1. Introduction

The modelling of continuous media and discrete lattices 
with rotational degrees of freedom is one of important 
problems of generalized continuum mechanics. In beam-like 
structures and granular media the rotations are usually quite 
small [1, 2]. For modelling of such deformations there were 
developed linear models, which takes into account small 
oscillations only [3, 4]. The development of generalized 
mechanics models describing not only small oscillations, 
but full continuous rotations as well is quite challenging and 
an open problem. In the current paper we extend the results 
presented in [5].

Currently, there is huge interest in development of 
mechanical metamaterials, i.e. materials with special and 
unique properties, which are not present in natural materials. 
From this perspective, among general Cosserat solids there 
is a special type of models where the second derivative of 
rotational degree of freedom in corresponding equation for 
rotations is absent, so-called reduced Cosserat models [6, 
7]. Understanding of mathematical and physical properties 
of such models, as well as general approach to describe the 
behavior of such media is quite nontrivial and interesting task.

In the development of generalized mechanics, as well 
as classical mechanics of deformable bodies, there are two 
common approaches: phenomenological and structural ones. 

Phenomenological approach is quite generic, but it is based 
on actual experimental data. Structural approach provides 
in-depth understanding of a developing theory, possibilities 
for its practical realization, experimental verifications and 
numerical modelling [8, 9].

2. Models

We consider 1D discrete lattice of particles of finite sizes, 
where their rotational degrees of freedom are taken into 
account.

The kinetic energy can be expressed in the following form

K  =  1/2 m ( .u + .v)  +  1/2  j  .φ,

where m is a mass, j is a moment of inertia, u and v are 
longitudinal and transverse displacements, and φ describes 
rotational degree of freedom in the form of either small 
oscillations or full continuous rotations of particles.

In the basic nonlinear model let’s consider elastic 
interaction with the potential energy

P  =  1/2 E(L – L0)
2,	 (1)

where E is stiffness of an element, L0 is initial length of the 
element and L is its length after the deformation.

The initial length L0 is found according to the following 
expressions



389

Vasiliev et al. / Letters on materials 7 (4), 2017 pp. 388-392

X0  =  x0  +  r0 cos α0 ,    Y0  =  y0  +  r0 sin α0 ;

X1  =  x1  +  r1 cos α1 ,    Y1  =  y1  +  r1 sin α1 ;

√
——————————‐

L0  =      (X1 – X0)
2  +  (Y1 – Y0)

2 ,

where [X0, Y0], [X1, Y1] are coordinates of connected nodes, 
[x0, y0], [x1, y1] are coordinates of the centers of linked 
particles, r0, r1 are distances from centers to edges, α0, α1 are 
the angles between radius-vectors pointing from the center 
of particles towards the edges and x-axis along the particles 
centers.

By defining the displacements as [u0, v0], [u1, v1], and 
rotational angles of particles as φ0, φ1 the length of the 
deformed connecting element is defined as

√
——————————–

L  =      (X'1 – X'0)
2  +  (Y'1 – Y'0)

2 .
where

X'0  =  x0 + u0 + r0 cos (α0+φ0) ,    Y'0  =  y0 + v0 + r0 sin (α0+φ0) ,
X'1  =  x1 + u1 + r1 cos (α1+φ1) ,    Y'1  =  y1 + v1 + r1 sin (α1+φ1) 

are coordinates of the connected edges after deformation.
We take into account momentum loads M in the equations 

for rotations and viscosity of the medium. Such loads can be 
easily realized by using external side loads. In realistic systems 
viscosity is usually present. The corresponding expressions 
are taken into account in equations (2, 3) as well.

We don’t present the equations of the nonlinear model 
because they are quite cumbersome. Below we’ll refer to them 
in accordance with the expression of the potential energy (1).

By linearizing these equations with respect to 
displacements uk, vk and keeping sine-dependence for 
rotations (sin φk ), we derive the following system of equations
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where 2a, 2b are sizes of the particles along the horizontal and 
vertical directions, h is the distance between their centers, d is 
the length of diagonal links, E1, E2 are stiffnesses coefficients 
of horizontal and tilted links, respectively (see Fig.1).

The complete linearization with respect to displacements 
uk, vk and angles of rotation φk leads to the following set of 
equations
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These equations are just linearization of the system 
(2). Formally, they present a discretize version of classical 
equations for Cosserat solids. The corresponding potential 
energy can be derived via linearization of the expression 
ΔL = L – L0 in (1) with respect to displacements u, v and 
angle of rotation φ by assuming that they are small enough. 
The expression of the potential energy of the links between 
particles with indices 0 and 1 can be written as

P  =  1/2 E [(u1 – u0) cos γ  +  (v1 – v0) sin γ  +
+  r0 (cos γ sin α0 – sin γ cos α0) φ0  –
–  r1 (cos γ sin α1 – sin γ cos α1) φ1)]2,

where we used the notations cos γ = (X1 – X0)/L0
 , 

sin γ = (Y1 – Y0)/L0
 , and γ describing an initial tilted angle of 

the link.
In this paper we’ll be referring to a model described by the 

potential energy (1), which is fully nonlinear, as the nonlinear 
model; a model described by equations (2) as sine-Cosserat 
model; and a model described by the set of equations (3) as 
standard linear Cosserat model.

3. Continuous approximations of 
steady state solutions in linear full 

and reduced discrete models

3.1. Standard full Cosserat model

We consider a system with fixed boundaries consisting of 
odd number of particles 2N + 1 in viscous medium with an 
applied angular momentum M at the center. Let’s perform 
linear analysis based on long-wavelength continuous 
approximation of model (3).

Due to linearity of the system (3) the longitudinal 
displacements are absent. As a result, we can consider coupled 
equations for transverse displacements and rotations only. 
The equations for the steady state without applied moments 
are the following

1 1 1 1
2

2 0,
2

k k k k kv v v
h h

ϕ ϕ+ − + −− + −
− = 	 (4)

2 1 1 1 1
1 22

2 0,
2

k k k k k
k

v vh D D
h h

ϕ ϕ ϕ ϕ+ − + −− + − + − = 
 

	 (5)

where we introduced the notations D1 = E1 – 2 (h2/d2) E2,   
D2 = 4 (h2/d2) E2.

To find approximate solutions one can employ the 
continuum long-wavelength single-field model. From 
discrete equations (4) and (5) we derive

Fig. 1. Schematics of the elementary cell together with the definition 
of parameters of the system.



390

Vasiliev et al. / Letters on materials 7 (4), 2017 pp. 388-392

vxx – φx = 0,     h2D1φxx + D2(vx – φ) = 0.	 (6)

The solution of this system of ordinary differential 
equations can be easily found and has the form

v(x) = C1

 x3/6 + C2

 x2/2 + C3 x + C4, (7)
φ(x) = C1 h

2 D1/D2
 + C1 x

2/2 + C2 x + C3.
The integration constants can be found from the boundary 

conditions.
Let’s put the origin x = 0 at the central particle, described 

by index k = 0. Due to symmetry and fixed boundary 
condition at x = L we have

v(0) = 0,   v(L) = 0,   φ(L) = 0,	 (8)

where L = Nh is half length of the chain.
The angle of rotation at x = 0 is undefined. Due to the 

symmetry we have v1 = –v–1, φ1 = φ–1. Under such conditions 
the equation (4) of the discrete model is automatically 
satisfied and the equation (5) takes the form

2 2 1 0 1
1 2 022 2 0.vb h D D M

h h
ϕ ϕ ϕ −  + − + =    

	 (9)

To find the integration constants one can use the 
continuous approximation of eq. (9)
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Such condition in continuous theory is called nonlocal 
one. The solution (7), which satisfies the boundary conditions 
(8), (10), has the following form
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The angle of rotation of the central particle under applied 
momentum can now be found
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( )

2 2
1 2

2 2 2 2 2 2
1 1 2 2

121(0) .
2 24 (8 6 ) (2 )

ML h D L D
b h h D L h D D L L h D

ϕ
+

=
+ + + −

The discrete solution for vk, φk can be obtained from 
the continuous one with the help of substitution x = kh, 
k = 0, 1,…, N into continuous solution (11), see above, namely 
vk = v(kh), φk = φ(kh). By substituting it into discrete equations 
and boundary conditions results in a residue, which allows to 
estimate the error of the continuous approximation as well as 
dependence of this error on other parameters. The residue of 
the discrete equation for displacements (4) is equal to zero, 
i.e. it is automatically satisfied. At the same time, the residue 
for the equation (5) is equal to

2
2

2 2 2 2 2
1 1 2 2

1 ,
2 24 (8 6 ) (2 )

MD
b D D D Dϕ

ε
ε ε ε

∆ =
+ + + −

	 (12)

where the notation ε = h / L is introduced, or by taking into 
account that L = Nh, ε = 1 / N.

The boundary conditions v0 = 0, vN = 0, φN = 0 of the 
discrete model (9) are automatically satisfied.

Note, that for ε → 0, i.e. when the length of a cell tends to 
zero with respect to the total length h / L → 0, the residue (12) 
vanishes. It can be explained due to the fact that for h → 0 the 
difference derivatives become identical with the continuous 
ones, thus the continuous approximations becomes exact.

3.2. Reduced Cosserat model

In the case when the second derivative of rotations is absent 
in (5), i.e. when D1 = 0 or E1 – 2(h / d)2E2 = 0, we have so-called 
reduced Cosserat model.

The equations of the reduced Cosserat model have the 
following form

1 1 1 1
2

1 1
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2 0,
2
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k k
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v v v
h h

v vD
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Below, we would like to mentions several interesting 
properties of this model.

In the long-wavelength approximation these equations 
lead to continuous reduced Cosserat model

vxx – φx = 0,   vx – φ = 0,

which, again, can be derived from eq. (6) of the full model by 
putting D1 = 0.

The general solution has the form

φ(x) = vx ,	 (13)

v(x) is an arbitrary double differential function.
Thus, the reduced model exhibits some arbitrariness, 

compared with the solution (7) of the full model. By choosing 
v(x) being a polynomial

v(x) = C1 + C2x + C3x
2 + C4x

3,	 (14)

from eq. (13) we can obtain

φ(x) = C2 + 2C3x + 3C4x
2.	 (15)

The integration constants can be found from the boundary 
conditions

v(0) = 0,   2b2D2(v(h)/h – φ(0)) + M = 0,   v(L) = 0,   φ(L) = 0.

After finding the integration constants, the final solution 
can be written in the following form

2

2 2
2 2

1 ( ) 1 ( )( 3 )( ) , ( ) ,
2 (2 ) 2 (2 )

Mx L x M L x L xv x x
b h L h D b h L h D

ϕ− − −
= =

− −

which coincides with the solution of the full model (11) for 
D1 = 0.

4. Numerical results

To demonstrate the validity of our approach we have 
performed the direct numerical simulations of some 
structures and compared the results of different models.

Let’s consider a finite 1D chain of 2N + 1 particles with 
fixed particles at the boundaries in viscous medium with 
symmetric couplings (see Fig. 1) and momentum M applied 
to the central particle.
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First, we find the dependence of steady state displacements 
and rotations of the particles on the applied momentum M 
by using a relaxation method. The applied momentum load 
gradually increased in step-wise manner. At each step we 
solved the set of dynamic equations (1 – 3). Due to presence 
of viscosity after certain time all oscillations damped out and 
the steady state was reached by the system.

The simulations were performed for characteristic 
dimensionless set of parameters E1 = 1, E2 = E1, h = 1, 
a = b = 0.2 h, i.e. the stiffnesses of all links are the same, the 
particles are of square shape and their size is much smaller 
compared with the distance between their centers. In our 
simulations a finite 1D chain consists of seven particles.

The dependence of the angle of rotation φ of the central 
particle on the dimensionless momentum ––M for different 
models is shown in Fig. 2, where circles represent the discrete 
values of the load for which the simulations were performed. 
Lines between them are shown for eye-tracing only. Note, 
that the results for all three models agree quite well for small 
applied moments and induced angles. The sine-Cosserat 
model (2) has the same accuracy as the standard linear 
Cosserat model (3). But, the error of the model (2) increases 
compared with the error of the model (3). However, it is 
important to note, that the linear Cosserat model (3) does 
not support continuous rotations at all, while sine-Cosserat 
model (2) does.

Stars in Fig. 2 indicate the conditions when the central 
particle starts to rotate. The dynamics of the system calculated 
via sine-Cosserat (2) and nonlinear (1) models is shown 
in Fig.  3a and Fig.  3b, respectively. For better visibility, the 
centers of the particles are connected to show the snapshot 
of the chain at a given moment of time. The central particle 
is not shifted. Note, that since the model (2) is linear with 
respect to displacements, the equations for the longitudinal 
displacements are not coupled to the transverse one and 
rotations. Thus, the particles can exhibit the transverse 
oscillations only (see Fig. 3а). In the nonlinear model (3) all 
degrees of freedom are coupled to each other, which implies 
that small oscillations can now induce both transverse as well 
as longitudinal displacements (see Fig. 3b).

To confirm the localization effect, a test simulation was 
performed when the central particle exhibited 1500 full body 
rotations, while other particles performed small oscillations 
only.

5. Conclusions

In the current paper we presented and discussed several 
models with different degrees of approximation. It was 
shown, that one of them (1) supports both small oscillational 
and continuous rotations excitations, but is very cumbersome 
to use to derive the continuous model. It might still be 
possible, though, by using operator approach. Another 
model (3) is a discrete analogue of the equations of motion 
and the potential energy of the classical micropolar theory 
[4]. As it was mentioned above, such model was successfully 
employed to describe systems with small oscillations. But, 
it doesn’t support full continuous rotations. Our aim is to 
derive models of the generalized continuum mechanics, 

which can adequately describe continuous rotations as well. 
In this paper we introduced one more model (2) with sine-
dependent terms for angles of rotations. The models (2), (3) 
are linear with respect to displacements. The nonlinearity of 
the displacements can be taken into account similar to Refs. 
[8 – 11].

In Section 3 we derived approximate static solutions for the 
linear case. In general case, they can be obtained numerically. 
Since we are interested in the generalized continuum theory, 
we obtained such solutions based on long-wavelength 
approximation. Both, full and reduced Cosserat models were 
discussed. It is important to note, that linear analysis is rather 
standard approach to study localization effects, which decay 
with the distance. It is usually used in the study of dynamical 
effects in lattices [10, 11, 12], frequency filters [12, 13], the 
tails of localized excitations, such as discrete breathers [14, 
15] and roto-breathers [16], for the analysis of their existence 
and properties.

The results of the direct numerical simulations are 
presented in Section 4. It was shown the good agreement 
between all discussed models under small loads. Importantly, 
it was demonstrated, that sine-Cosserat model (2) describes 
the small static turns of the particles analogous to linear 
Cosserat model (3), but in addition to this also supports 
continuous rotation of the particles.

Aknowledgements. The work of AAV was carried out under 
the financial support of the Ministry of Education and Science 
of Russian Federation (Project 9.7446.2017 / 8.9).

Fig. 2. Dependence of the angle of rotation of the central particle on 
the applied load for nonlinear (1), sine-Cosserat (2) and standard 
Cosserat (3) models.

Fig. 3. Demonstration of the dynamics of the system of seven 
particles with the rotating central particle: sine-Cosserat model (a) 
and nonlinear model (b).
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