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Conventional normal modes are independent of each other in the framework of harmonic approximation. When small 
anharmonic terms in the Hamiltonian are taken into account, these dynamical objects are only approximate and one can 
speak about their interactions. In our previous works, the theory of bushes of nonlinear normal modes has been developed for 
dynamical systems with discrete symmetry groups. With the aid of this theory it is possible to find some exact solutions beyond 
the harmonic approximation. Each bush is an invariant manifold corresponding to a collection of m nonlinear normal modes, 
where m is the bush dimension. During the evolution of a given bush, this collection conserves, but amplitudes of the modes, 
entering the bush, change in time. Previously, we proved with the aid of group-theoretical methods, that in graphene under 
uniform strain (space symmetry group P6mm) there can exist 4 bushes with m = 1, 14 bushes with m = 2, 1 bush with m = 3, 
6 bushes with m = 4, and etc. In this paper, we study some low-dimensional bushes in graphene using ab initio calculations 
based on the density functional theory. The amplitude-frequency dependencies of one-dimensional bushes are found. The 
excitation transfer between nonlinear vibrational modes of different symmetry that belong to the same bush is investigated.

Keywords: graphene, group-theoretical methods, nonlinear normal modes, DFT simulations.

1. Introduction

The last decades have been marked by intensive studies of 
nonlinear atomic vibrations in periodic structures, especially, 
in crystal lattices. One type of such vibrations represents 
discrete breathers. A recent review on this topic can be found 
in [1]. There is a large number of papers devoted to studying 
discrete breathers in graphene [2 – 6]. In the present work, 
we investigate another type of nonlinear vibrations in 
crystal lattice, which, in contrast to discrete breathers, are 
delocalized dynamical objects.

Traditionally, harmonic approximation is used as a first 
step in studies of nonlinear dynamics of classical N-particle 
Hamiltonian systems. In this way, one can introduce 
conventional (linear) normal modes which, being exact 
solutions in the framework of this approximation, are 
independent from each other. If small anharmonic terms in 
the Hamiltonian are taken into account, normal modes turn 
out to be only approximate solutions. Therefore, the following 
natural question arises: “Do there exist any exact solutions 
in nonlinear dynamical systems beyond the harmonic 
approximation?”

Since any crystal can be characterized by a space group, 
we are interested in exact vibrational solutions dictated 
by this symmetry. It occurs [7, 8], that such “symmetry-
determined” solutions do exist and we call them bushes of 
nonlinear normal modes (NNMs). The general theory of 
bushes of NNMs in systems with discrete symmetries was 
developed in [7 – 9]. Bushes of vibrational modes in different 

physical systems with different point and space symmetries 
were studied in [7 – 20].

Every bush is characterized by some subgroup Gj ⊂ G0 
of the symmetry group G0 of dynamical system in its 
equilibrium state (or a subgroup of its Hamiltonian). We call 
G0 “parent symmetry group”. The possibility of a bush to exist 
as exact dynamical regime is provided by some symmetry-
related selection rules for excitation transfer between modes 
of different symmetry [7]. In particular, a vibrational mode 
with higher symmetry cannot excite any mode with lower 
symmetry: excitation transfers from a given mode to that 
with higher symmetry group independent of specific types of 
interparticle interactions in the considered physical system.

Construction of the bushes of NNMs can be done with 
the aid of group-theoretical methods based on the apparatus 
of irreducible representations (irreps) of the symmetry 
groups [21].

Each bush represents a full collection of nonlinear normal 
modes which are connected by “force” interactions [8] and 
the number of these modes (m) is the dimension of the 
given bush. It is essential that bushes with small dimensions 
(for example, with m = 1, 2, 3, 4,…) can be excited in many 
physical systems with discrete symmetry. One-dimensional 
bushes (m = 1) describe time-periodical motion while bushes 
whose dimension m > 1 describe quasi-periodical motion 
with m basis frequencies in the Fourier spectrum.

We speak about stability of the given bush, if the 
collection of its modes is conserved in time. Nevertheless, the 
bush represents a dynamical object since amplitudes of these 



368

Chechin et al. / Letters on materials 7 (4), 2017 pp. 367-372

modes change during the time evolution. Every bush can 
be considered as an individual Hamiltonian system, whose 
dimension is less than the whole dimension of the considered 
system. The energy of the initial excitation turns out to be 
trapped in the given bush.

If the bush with the symmetry group Gj loses its stability, 
when we increase the energy of initial excitation, it transforms 
into another bush with larger dimension and with lower 
symmetry group ~Gj ⊂ Gj.

Some group-theoretical results on small-dimensional 
vibrational bushes in graphene were published in our 
previous paper [20], which was devoted to geometrical 
aspects of bushes of NNMs. We discussed their structure, i.e. 
the collection of nonlinear vibrational modes entering bushes 
and displacement patterns associated with these modes. In 
the present paper, we discuss dynamical aspects of vibrational 
bushes in graphene. Namely, we consider the evolution of the 
modes of the given bush in time, in particular, the transfer of 
excitation from the initially excited mode (“root mode”) to 
the other modes (“secondary modes”) of the bush.

Our discussion of the bush dynamics is based on the 
computational methods of the density functional theory 
[22] realized in software package Quantum Espresso [23]. 
Quantum-mechanical equations by Kohn and Sham are 
used in the Quantum Espresso code for describing dynamics 
of electrons, while classical equations are solved for nuclei 
with forces generated by electron shells at any time step. 
For solving Kohn-Sham equations, the basis of plane waves 
was used with maximal energy determined by cutoff energy 
Ecutoff = 50 Hartree and time step was 0.2419 fs.

The paper is organized as follows. Section 2 is devoted 
to some group-theoretical results which were not presented 
in the previous publication [20]. In Sec. 3, we discuss one-
dimensional bushes, while in Sec. 4, we consider two-
dimensional bushes in graphene monolayer under uniform 
strain (space group P6mm). In Conclusion, we summarize 
the main results.

2. Bushes of vibrational 
nonlinear normal modes

A brief review of the group-theoretical methods for 
construction of bushes of nonlinear normal modes was 
presented in the previous paper [20], while full description 
of these methods can be found in [7, 21].

As was already discussed, an m-dimensional bush Bj(t) 
consists of m individual NNMs interacting with each other. It 
can be written as follows:

Bj(t) = ∑
m

k = 1
cjk(t)φk.	 (1)

Here φk are N-dimensional vectors, where N is the number of 
degrees-of-freedom in an extended cell (EC) of the considered 
crystal. In general, this cell is larger than the primitive cell 
by an integer factor s. The vectors φk represent basis vectors 
of different irreducible representations of the parent space 
group G0 (for the graphene monolayer G0 = P6mm). Each 
φk determines a certain displacement pattern with its own 
symmetry group Gk ⊆ G0. Some examples of such patterns 
can be seen in Fig. 1. Every pattern represents a snapshot 

of the vibrational picture of the graphene monolayer. All 
arrows in each of Fig. 1 possess equal length, but different 
directions. They determine the displacements of atoms from 
their equilibrium positions. Vibrational time-evolution of 
these displacements is describes by the coefficients cjk(t) in 
Eq. (1), which are different for different modes (index k) and 
different bushes (index j).

Speaking about the stability of the given bush we mean 
that the set of its basis vectors φk, k = 1..m conserves in time. 
On the other hand, the time-dependent coefficients cjk(t) 
change and their behavior describes evolution of the given 
bush.

Discussing the vector collection {φk, k = 1..m} of the 
m-dimensional bush, we deal with its geometrical aspect. In 
mathematical sense each bush represents a certain invariant 
manifold1 decomposed in the basis vectors of the irreps of the 
parent symmetry group. These invariant manifolds we find 
with the help of some specific group-theoretical methods 
[21]. On the other hand, considering the time-behavior of the 
coefficients cjk(t) we deal with dynamical aspects of the bush.

The displacement pattern corresponding to a given bush 
Bj(t) at any fixed time t represents a certain superposition of 
m delocalized nonlinear vibrational modes cjk(t)φk. For the 
case of essentially weak nonlinearity

0 0( ) cos( ),jk jk jk jkc t c tω φ= + 	 (2)

and, therefore, each nonlinear normal mode transforms to a 
certain conventional linear normal mode.

As was already mentioned in Introduction, the existence 
of bushes as exact small-dimensional dynamical objects can be 
explained by existence of certain selection rules for excitation 
transfer between vibrational modes of different symmetry. 
Indeed, the modes entering a given bush, in general, possess 
different symmetry groups. The symmetry of the whole bush 
is the intersection of all these groups of individual modes.

Let us excite a certain vibrational mode with symmetry 
group Gj. In accordance with the above-mentioned selection 
rules, the excitation from this “root” mode can transfer only 
to those modes whose symmetry is greater or equal to Gj.

2 
Namely, these modes are called “secondary” modes. As a 
result, the symmetry group of the whole bush will be also 
equal to Gj. Thus, if we excite an arbitrary vibrational mode, 
a certain bush will appear. However, the dimension of this 
bush can be sufficiently large if we initially excite the mode 
with sufficiently low symmetry group Gj. On the contrary, if 
the root mode possesses high symmetry3 the bush can be of 
small dimension.

In [20] we found that in graphene monolayer, whose 
symmetry group in equilibrium state is G0 = P6mm, only 
4 one-dimensional, 14 two-dimensional, 1 three-dimensional 
and 6 four-dimensional vibrational bushes, corresponding to 
the points of high symmetry in the Brillouin zone, can be 
excited.

1	 This manifold is invariant with respect to the time evolution of the 
system.

2	 These rules are not confined to this single statement!

3	 This means that group Gj contains large number of symmetry elements.



369

Chechin et al. / Letters on materials 7 (4), 2017 pp. 367-372

Note, that a given bush Bj(t), which appears as a result 
of excitation of the root mode only, can be also generated by 
excitation of all its modes simultaneously, in accordance with 
Eq. (1), by assigning the initial values cjk(t0), .cjk(t0) in Eq. (1) 
for all modes k = 1..m. However, generation of a given bush by 
exciting only one mode seems to be the most natural way of 
the bush excitation.

Let us emphasize once more that the bush structure as a 
certain collection of modes is determined by its symmetry 
group only and does not depend on the specific interparticle 
interactions in the physical system. As a consequence, we can 
reveal vibrational bushes of identical structures in physical 
systems with different type of interparticle interactions, but 
with the same symmetry group G0 in equilibrium state. On 
the other hand, dynamics of the bush, i.e. explicit form of the 
time-dependent functions cjk(t), essentially depends on these 
interactions.

3. One-dimensional bushes in 
graphene monolayer

We have found that only 4 one-dimensional bushes can exist 
in graphene. Their displacement patterns are presented in 
Fig. 1. Extended cells (EC) of vibrational state are shown in 
this figure by dotted lines.

Let us consider the bush B3(t) with the symmetry group 
G3 = P6mm. Only one term, c31(t)φ31, corresponds to it in 
Eq.  (1). Arrows show the values and directions of atomic 
displacements at a certain fixed instant. The time-evolution 
of these displacements are defined by only one function c31(t). 
Here, φ31 is a 12‑dimensional vector since EC for this bush 
contains 6 atoms and each of them possesses 2 degrees of 
freedom, describing its in-plane vibrations. The bush B3(t) 
describes synchronic vibrations of all atoms of the graphene 
monolayer. If the function c31(t) is equal to zero, at a certain 
moment, all atoms pass through their equilibrium positions, 
and further evolution leads to a change of directions of atomic 
displacements to opposite ones.

Atomic vibrations described by one-dimensional bushes 
are time-periodic. Moreover, every one-dimensional bush 
describes one-parametric dynamical regime since positions 
of all graphene atoms are determined, at any time t, by only 
one parameter c31(t).

To avoid misunderstandings, let us note that we sometimes 
use the term “mode” not only for the full expression c(t)φ, 
but also for the vector φ, which determines the displacement 
pattern of a given mode.

Let us note, that all arrows for the bush B3(t) in Fig.  1 
(as well as in all similar figures below), being different in 
directions are equal in length.

Next, we consider the properties of nonlinear vibrations 
described by the time-dependent function c31(t). If a certain 
one-dimensional bush appears as a result of a certain choice of 
the initial conditions for computer modeling, time-evolution 
of all atoms must be identical, while in the opposite case time-
evolution of different atoms will be different.

In Fig. 2, we present nonlinear vibrations of one carbon 
atom of graphene for the bush B3(t) since the same time-
evolution corresponds to all other atoms. It can be seen from 
this figure, that these oscillations are nonlinear.

In  Fig. 3, amplitude-frequency dependency of atomic 
nonlinear oscillations is shown for the graphene monolayer 
under uniform strain of 5 % and 10 %. Fig. 3a, corresponding 
to the bush B3(t), whose displacement pattern is shown in 
Fig. 1, demonstrates hard nonlinearity of atomic vibrations 
since the frequency increases with increasing amplitude.

In Fig. 3b, for the graphene monolayer under the same 
uniform strains, we present the amplitude-frequency 
dependency of atomic oscillations, corresponding to the 
bush B1(t), whose displacement pattern is shown in Fig.  1. 
In contrast to the above discussed bush B3(t), the bush 
B1(t) demonstrates soft type of nonlinearity (the frequency 
decrease with amplitude increasing). The amplitude-
frequency dependencies for two other one-dimensional 
bushes, B2(t) [soft nonlinearity] and B4(t) [hard nonlinearity] 
are expressed very weakly.

It is interesting to note that in the bushes B1(t) and B3(t) 
all graphene atoms vibrate, while in the bushes B2(t) and B4(t) 
some atoms are motionless (see Fig. 1).

Fig. 1. Nonlinear normal modes φ1, φ2, φ3, φ4 which are one-dimensional bushes.

Fig. 2. Nonlinear atomic oscillations for the bush B3(t).
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4. Two-dimensional bushes

Let us consider some two-dimensional bushes in graphene 
with different multiplications s of the cell in the vibrational 
state (EC).

Among 14 two-dimensional bushes there are only 3 with 
multiplication number s = 4: the bush B5(t) with space group 
P6, B6(t) with group P3m1 and B7(t) with group P31m.

1) We begin with the bush

B5(t) = μ(t)φ5 + υ(t)φ4 .	 (3)

Here, we replace the functions c55(t) and c54(t) in Eq. (1) by 
the functions μ(t) and υ(t), respectively, to avoid unnecessary 
indexes.

Displacement pattern for the root mode φ5 of this bush 
can be seen in Fig. 4, where position of one six-fold rotation 
axis of the infinite set of such axes is marked with a cross. The 
motion of six atoms of the first “coordinate sphere” (in two-
dimensional case it is a circle) is characterized by the so-called 
“tilting mode”. This means that they rotate by a certain angle 
around the above axis, stop for a moment and then start to 
rotate in the opposite direction. On the other hand, six atoms 
of the second coordination sphere remain immobile.

However, this mode, being excited, cannot exist as an 
individual nonlinear vibrational mode. Indeed, another 
(secondary) mode, φ4, turns out to be involved in the 
oscillatory process as a result of the excitation of the root 
mode φ5 at the initial moment of time.

The displacement pattern for the above mode φ4 is given 
in Fig. 1. If this mode is initially excited, then it would exist 
indefinitely in time as an independent dynamic object which 
is one-dimensional bush B4(t), considered in the previous 
section.

It can be seen from Fig. 1 that, similar to the case 
of the mode φ5, all atoms of the second coordination 
sphere are immobile, while motion of atoms of the first 
coordination sphere is described by a “breathing” mode: they 
simultaneously move towards the position of the cross and 
then backwards from it.

Thus, the mode φ4 can exist independently of the mode φ5 
(as well as of all other modes!), i.e. it represents by itself one-
dimensional bush B4(t). On the other hand, the mode φ5 can 
not exist without the secondary mode φ4 that is involved into 
the vibrational process because of interaction with the root 
mode φ5. This is the main property of every bush of nonlinear 
normal modes. Note, the symmetry group of the secondary 
mode φ4 is P6mm, while that of the root mode φ5 is P6, which 
is a subgroup of the group P6mm.

Speaking about the two-dimensional bush B5(t) from 
Eq. (3), we should keep in mind that it is an exact solution of 
the nonlinear physical system with symmetry group P6mm 
for arbitrary functions µ(t) and υ(t): this linear combination 
survives in time without involvement of any other vibrational 
modes in graphene.

A similar situation occurs in studying interactions 
between rotational and vibrational nonlinear modes 
in molecules. Indeed, in the framework of harmonic 
approximation conventional normal modes are independent 
from each other. However, they start to interact when we 
take into account some anharmonic terms of Hamiltonian. 
The breathing mode can exist without excitation of rotating 
mode. However, excitation of rotating mode leads to 
excitation of the breathing mode. In the last case, two-
dimensional bush appears in dynamics of polyatomic 
molecule, and the rotating mode is the root mode of this 
bush.

Chechin et al. / Letters on materials 7 (4), 2017 pp. 367-372

Fig. 4. Displacement patterns for the root modes φ5, φ6, φ7 of the bushes B5(t), B6(t), B7(t) respectively.

a                                                                                                                          b
Fig. 3. Amplitude-frequency dependencies of atomic nonlinear oscillations for the one-dimensional bushes: a) B3(t); b) B1(t).
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Using computational methods of the density functional 
theory [23], we have verified the above-discussed results of 
the group-theoretical analysis. At the initial instant, only 
root mode µ(t)φ5 is excited with a certain value of µ(0)φ5 ≠ 0, 
while the value of the secondary mode υ(t)φ4 is equal to zero 
υ(0) = 0. One can see that during the time-evolution (t > 0) 
the secondary mode φ4 appears, but it amplitude is essentially 
small compared to that of the root mode. For example, 
in Fig. 5a, for the case µ(0) = 0.381 Å, the amplitude of the 
secondary mode υ(t) is a 20 times less than that of the root 
mode.

2)  Next, let us consider the bush B6(t) with space 
group P3m1. The displacement pattern of its root mode φ6 
is presented in Fig. 4. The secondary mode of this bush is 
φ4 whose displacement pattern is given in Fig. 1. Thus, the 
bushes B5(t) and B6(t) possess one and the same secondary 
mode, but these bushes differ from each other by their root 
modes. For both bushes B5(t) and B6(t) atoms on the second 
coordination sphere are immobile, while atoms belonging 
to the first coordination sphere move in different ways. 
Indeed, unlike the titling motion in the mode φ5, the mode 
φ6 describes some type of vibration which is shown by 
corresponding arrows in Fig. 4.

Time-evolution of the root and secondary modes of 
the bush B6(t) in graphene under uniform 5 % strain for 
two different initial values of the root mode is presented in 
Fig. 5b.

3)  Displacement pattern of the root mode φ7 of the 
bush B7(t) is presented in Fig. 4. Similar to the case of the 
bushes B5(t) and B6(t), the secondary mode of the bush B7(t) 
is φ4. The atoms of the second coordination sphere are also 
immobile in vibrational process describing by the bush B7(t), 
while the atoms of the first coordination sphere move in a 
way, different from that of the bushes B5(t) and B6(t) depicted 
in Fig. 4.

Time-evolution of the bush B7(t) in graphene under 
uniform 5 % strain is presented in Fig. 5c. Note, that the 
secondary mode, being small at the beginning of motion, 
becomes comparable in order of magnitude with the root 
mode as time goes.

5. Conclusion

In this paper, large-amplitude in-plane vibrations of carbon 
atoms of graphene monolayer under uniform strain (space 
group P6mm) are discussed. These oscillations are described 
in the framework of the theory of bushes of nonlinear 
normal modes, which represent exact solutions for any 
nonlinear physical system with discrete symmetry. We 
discuss both the structure of low-dimensional bushes, which 
can be obtained with the aid of group-theoretical methods, 
as well as dynamics of these bushes by means of ab initio 
calculations based on the density functional theory. We have 
obtained full confirmation of the group-theoretical results 
by such ab initio computer modeling.

One application of our results can be found in papers [24, 
25], where discrete breathers are constructed by imposition of 
certain bell-shaped functions on the displacement patterns of 
one-dimensional bushes in graphene.
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