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In this paper uniaxial tension of two-dimensional auxetic cellular structures is studied experimentally. Various samples 
were made by the laser cutting method from nonauxetic polyethylene terephthalate (PET-A amorphous) planes of size 
112.5 × 24 × 0.7 mm with central area of 28 × 24 × 0.7 mm. The transverse size of elements of hexagons was equal to sample 
thickness. The samples were subjected to monotonous uniaxial tension until the last moment when they still remained plane. 
Comparison of mechanical properties of the defect-free cellular structures consisting of concave hexagons with straight 
elements and concave hexagons in which part of straight elements is replaced with curvilinear elements is given as a result 
of experimental analysis. Cellular structure with straight elements showed lower value of Poisson’s ratio in comparison with 
cellular structure with curvilinear elements. Influence of defects on mechanical properties of cellular structure with curvilinear 
elements is studied. We conclude that for the considered samples of cellular structure with curvilinear elements at uniaxial 
tension, loss of one horizontal element (near the center of the sample) changes effective mechanical properties much less than 
for the case of same structure with one vertical element being absent. As a result, tensile force – displacement diagram for four 
samples was calculated from the experimental data.
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1. Introduction

For isotropic materials Poisson’s ratio varies in the range 
from –1 to 0.5 [1]. The majority of materials have positive 
values of Poisson’s ratio. In the last decades rapid growth 
of number of theoretical and experimental studies on 
manufacturing and applications of materials and structures 
with negative values of Poisson’s ratio is observed [2]. Such 
materials are now called auxetics [3,4]. To date, already more 
than four hundred crystal auxetics are known [5,6]. The 
greatest number (more than three hundred) belongs to cubic 
crystals [7]. Polymeric foams [8,9], composites [10 – 12], 
two-dimensional and three-dimensional cellular structures 
[13 – 15] are the examples showing auxetic properties.

The present paper reports the results of experimental 
study of two-dimensional auxetic cellular structures at 
tension. The concave hexagons with straight elements and 
concave hexagons in which a part of straight elements is 
replaced with curvilinear elements were chosen as a basis of 
the considered structures.

It is common that a concave hexagon with straight 
elements is used as a basic element of two-dimensional 
auxetic structures. In [17] we have introduced a hexagonal 
basic element in which a part of straight elements is replaced 
by curvilinear ones. In the present study we consider tension 
of two-dimensional auxetic structures with basic elements 
in the form of concave hexagons with straight elements 
and concave hexagons in which part of straight elements 
is replaced by curvilinear ones. Tensile behavior of similar 
samples containing structural defects was also considered.

2. Methods

The program of experimental studies included mechanical 
tests on uniaxial tension of a series of plane samples 
manufactured using femtosecond laser cutting method from 
a nonauxetic polyethylene terephthalate (PET-a amorphous) 
0.7 mm thick plates. The laser machine was capable to 
perform displacements of the plate with micron accuracy, 
with the average power of the radiation of 3 W. Duration 
of radiation impulses was 500 fs, energy of an impulse was 
120 µJ. Radiation power in one impulse reached 240 MW.  
Four plane samples of size 112.5 × 24 × 0.7 mm with central 
area of 28 × 24 × 0.7 mm were produced for this study (Fig. 1).  
The samples had the following design: sample zz — concave 
hexagons with rectilinear elements (Fig. 1a), sample ss  — 
concave hexagons with curvilinear elements (Fig. 1b), 
sample ssH — concave hexagons with curvilinear elements 
and one horizontal element removed (Fig. 1c), sample ssV — 
concave hexagons with curvilinear elements and one vertical 
element removed (Fig. 1d). The design of samples featured 
the transverse size of structural elements to be equal to 
thickness of an initial plate.

All four samples were subjected to monotonous uniaxial 
tension on a MTS Synergie 400 setup at displacement rate of 
1 mm / min with simultaneous registration of displacements 
and forces. The samples were stretched until the last moment 
when they remained plane. Changes of sample geometry 
were registered in 12-Megapixel video and still images 
obtained during the experiment by Dahua IPC-HF81200E. 
Force and displacements of cantilever-moving beam of upper 
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grip were also registered by the built-in sensors of the setup. 
Displacements and deformations were calculated after video 
acquisition and still images preparation using digital image 
correlation method in Ncorr software [18].

3. Result and discussion

The tensile force – displacement (F – ∆ly) diagrams for four 
plane samples are given in Fig. 2a. Apparently from the 
figure, the diagrams of the studied samples stay similar up to 
a displacement value of 12 mm. The maximum longitudinal 
displacement of sample zz is much less than the same for 
samples with curvilinear elements. Distinction is related 
with structure feature of curvilinear elements. The cellular 
structures containing curvilinear elements experience big 
plastic deformations. The photos for four considered samples 
at different stages of deformation are presented in Fig. 3b.

Variation of transverse displacement ∆lx on longitudinal 
displacement ∆ly for four samples is given in Fig. 2b. The 
sample zz attained smaller displacements in comparison with 
the samples containing curvilinear elements. The maximum 
change of longitudinal displacement for a sample with 
rectilinear elements was 9.6 mm. For the case of samples 
with curvilinear elements maximum change of longitudinal 
displacement reached more than 18 mm (sample ss  — 

18.6 mm, sample ssH — 18.8 mm, sample ssV — 20.8 mm). 
Sample with one vertical element removed elongated much 
more than other samples containing curvilinear elements. 
It is related with the fact that due to absence of a horizontal 
element the sample lost it’s stability later than other samples 
(see Fig. 3). Change of transverse displacement is also bigger 
for samples with curvilinear elements as compared to the 
sample zz. The maximum changes of transverse displacements 
were 6.4 mm for sample zz, 9.2 mm for sample ss, 8.9 mm for 
sample ssH and 7.2 mm for sample ssV.

Poisson’s ratio in small deformations elasticity theory 
is defined by a formula ν = –εx / εy, where εy  — longitudinal 
deformation, εx — transverse deformation. By analogy with 
this formula in this paper we study variability of Poisson’s ratio 
for samples with concave hexagons. In this case εy = ∆ly / L0 — 
longitudinal deformation, L0 = 28 mm — length of the central 
area, εx = ∆lx / l0  — transverse deformation, l0 = 24 mm  — 
width of the central area.

Calculation of Poisson’s ratio dependence on longitudinal 
and transverse deformations for four samples is given in 
Fig. 4. Apparently from Fig. 4a the plane cellular structures 
containing curvilinear elements can experience increased 
longitudinal deformations. As a result of tension of two-
dimensional cellular structure with straight elements the 
maximum longitudinal deformations were obtained 40 %, and 

Fig. 1. Four plane samples with the central area 28 × 24 × 0.7 mm and the following designs: concave hexagons with rectilinear elements, 
sample zz (a); concave hexagons with curvilinear elements, sample ss (b); concave hexagons with curvilinear elements and one horizontal 
element removed, sample ssH (c); concave hexagons with curvilinear elements and one vertical element removed, sample ssV (d).

Fig. 2. Tensile force – displacement (F – ∆ly ) diagram (а) and variation of transverse displacement ∆lx on longitudinal displacement ∆ly (b).
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maximum transverse deformations reached 32 %. In case of 
samples with curvilinear elements the maximum longitudinal 
and maximum transverse deformations were 78 % and 46 % 
for sample ss, 80 % and 44 % for sample ssH, 88 % and 36 % for 
sample ssV. For sample ss and sample ssH longitudinal and 
transverse deformations have close values, i.e. it is possible 
to claim that lack of a horizontal element in cellular structure 
has weak influence on mechanical properties at an uniaxial 
tension. Lack of vertical defect (sample ssV) leads to stronger 
extension in comparison with sample ss and sample ssH (see 
Fig. 3).

Poisson’s ratio for cellular structure with straight elements 

at small deformations is equal to –0.4 and then quickly 
decreases to –0.8 at increase of deformations. For samples ss 
and ssH the minimum measured value of Poisson’s ratio were 
–0.58 and –0.55 respectively. It should be noted that for samples 
zz, ss and ssH, Poisson’s ratio depending on longitudinal and 
transverse deformations monotonously decreases unlike 
the same for sample ssV were Poisson’s ratio has complex 
nature of behavior. It should be noted that for sample ssV,  
lack of vertical element leads to lower transverse displacement 
and, therefore, lower transverse deformation as compared 
to sample ss and this is preserved in Poisson’s ratio. The 
minimum value of Poisson’s ratio for a sample ssV is –0.41.

Fig. 3. Photographs of Sample zz at different stages of deformation εx = 0, εy = 0 (a), εx = 0.110, εy = 0.172 (b), εx = 0.319, εy = 0.400 (c);  
Sample ss at different stages of deformation εx = 0, εy = 0 (d), εx = 0.167, εy = 0.396 (e), εx = 0.457, εy = 0.785 (f);  
Sample ssH at different stages of deformation εx = 0, εy = 0 (g), εx = 0.139, εy = 0.470 (h), εx = 0.443, εy = 0.800 (i);  
Sample ssV at different stages of deformation εx = 0, εy = 0 (j), εx = 0.145, εy = 0.445 (k), εx = 0.360, εy = 0.881 (l);  
Axis y corresponds to tension direction, and axis x corresponds to the transverse direction.

Fig. 4. (Color online) Poisson’s ratio dependence on longitudinal (a) deformations εy and (b) transverse deformations εx for four samples.
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4. Conclusion

Mechanical properties of plane cellular structures 
with auxetic behavior at uniaxial tension are studied 
experimentally. Tensile tests of the sample consisting 
of rectilinear elements and faultless sample containing 
curvilinear elements showed that cellular structures with 
curvilinear elements extend stronger in comparison with 
structures with rectilinear elements. This is related to the 
fact that structures with curvilinear elements can experience 
stronger plastic deformations due to features of design. 
On the other hand cellular structures with rectilinear 
elements have higher negative values of Poisson’s ratio. 
Experimental data analysis showed that lack of a horizontal 
element in cellular structure with curvilinear elements has 
little influence on its mechanical properties at uniaxial 
tension unlike the same for structure with removed vertical 
curvilinear element.
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