УДК 621.762

Properties of the Ti-C-H-Cu composites obtained by mechanosynthesis using organic media

M. A. Eryomina^{1,†}, S. F. Lomayeva¹, S. N. Paranin², S. V. Zayatz², V. V. Tarasov³,

I.S. Trifonov⁴

†mrere@mail.ru

¹Physical Technical Institute Ural Branch of RAS, 132 Kirova str., 426000, Izhevsk, Russia
²Institute of Electrophysics Ural Branch of RAS, 106 Amundsen str., 620216, Yekaterinburg, Russia
³Institute of Mechanics, Ural Branch of RAS, 34 T. Baramzinoy str., 426067, Izhevsk, Russia
⁴Kalashnikov Izhevsk State Technical University, 7 Studencheskaya str., 426069, Izhevsk, Russia

Composites of a Ti-C-H-Cu system were obtained by mechanosynthesis in liquid carbon media (petroleum ether, xylene) followed by magnetic pulse compaction of the powders at 500°C in vacuum with the pressure amplitude of about 1.5 GPa. The chosen proportion of the components (Ti, Cu) corresponded to the composition TiC (90 vol%) – Cu (10 vol%). In addition, composites containing Cr and/or Ni with the atomic ratio of concentrations Cu:(Cr,Ni) equal to 80:20 were obtained. The compacts obtained had the diameter of 10 mm and thickness of 3 to 5 mm. The structure and phase composition of the density, microhardness and wear resistance were determined. The composites processed had the density of 87 - 95% of the theoretical value. The mechanosynthesis process in petroleum ether is not complete in 3h, since in the phase composition of compacts one observes, apart from intermetallic phase CiTi₂ and titanium carbohydride Ti₂CH_{0.6}, a significant amount of the initial Ti. The composites exhibit a layered microstructure. Use of xylene for mechanosynthesis process of the same duration allows one to obtain two-phase composites Ti₂CH_{0.6} + CuTi₂. An increase of the duration of mechanical treatment up to 6 h leads to a formation of intermetallic CuTi in the phase composition of the composites obtained. Use of xylene allows one to obtain also 10 - 20 vol% of nonstoichiometric carbide TiC. The microhardness of about 5 GPa was obtained for all the composites studied. Abrasive wear of the composites is an order of magnitude lower than that of steel U13. Alloying with Ni and/or Cr leads to some decrease of wear resistance due to a decrease of the quantity of TiC phase.

Keywords: titanium carbohydride, copper, mechanosynthesis, magnetic-pulse compaction, wear resistance.

Свойства композитов Ti-C-H-Cu, механосинтезированных с использованием органических сред

Ерёмина М. А.^{1,†}, Ломаева С. Ф.¹, Паранин С. Н.², Заяц С. В.², Тарасов В. В.³,

Трифонов И.С.⁴

†mrere@mail.ru

¹Физико-технический институт УрО РАН, ул. Кирова 132, 426000, Ижевск, Россия ²Институт электрофизики УрО РАН, ул. Амундсена 106, 620216, Екатеринбург, Россия ³Институт механики УрО РАН, ул. Т. Барамзиной 34, 426067, Ижевск, Россия ⁴Ижевский государственный технический университет им. М. Т. Калашникова, ул. Студенческая 7, 426069, Ижевск, Россия

Механосинтезом в жидких углеводородных средах (петролейный эфир, ксилол) и последующим магнитно-импульсным прессованием порошков при 500°С в вакууме при амплитуде импульсов давления ~1.5 ГПа получены композиты системы Ti-C-H-Cu. Для исследования выбраны концентрации Ti и Cu, обеспечивающие состав композита TiC (90 об.%) – Cu (10 об.%). Помимо этого получены композиты, легированные Cr и/или Ni, с соотношением Cu:(Cr,Ni) равным 80:20. Диаметр полученных компактов — 10 мм, толщина — 3 – 5 мм. Исследовано структурно-фазовое состояние композитов, определены их плотность, микротвёрдость и абразивная износостойкость. Полученные композиты имеют плотность 87–95% от теоретического значения. Механосинтез в петролейном эфире в течение 3 ч протекает недостаточно полно, так как при последующем компактировании в фазовом составе композита помимо фаз интерметаллида CuTi₂ и карбогидрида титана $Ti_2CH_{0.6}$ наблюдается значительная доля исходного титана. Композиты имеют слоистую микроструктуру. Механосинтез в ксилоле в течение того же времени позволяет получать композиты с двухфазной структурой $Ti_2CH_{0.6} + CuTi_2$. Увеличение времени механообработки до 6 ч приводит к появлению в составе полученных образцов интерметаллида CuTi. Механосинтез в ксилоле позволяет также получить 10–20 об.% фазы нестехиометрического карбида титана TiC с решёткой, обеднённой углеродом. Микротвёрдость всех полученных композитов, независимо от их химического и фазового составов, составляет ~5 ГПа. Величина абразивного износа на порядок ниже, чем для стали У13. Легирование Ni и/или Cr приводит к некоторому ухудшению износостойкости вследствие снижения доли TiC.

Ключевые слова: карбогидрид титана, медь, механосинтез, магнитно-импульсное прессование, износостойкость.

1. Введение

Свойства твёрдых сплавов на основе карбида титана в значительной степени зависят от технологии их производства. Наилучший уровень свойств достигается при уменьшении зерна карбида [1]. Для получения гомогенной смеси ультрадисперсного TiC со связующим компонентом используют технологии механохимической активации [2-5]. Для уменьшения загрязнения карбида титана материалом мелющих тел в активируемую смесь порошков вводят жидкую фазу [3]. Механосинтезом (МС) титана и углерода в присутствии жидкого углеводорода получают метастабильные г.ц.к. твердые растворы углерода и водорода в титане, которые при последующей термообработке распадаются с образованием однофазных (TiC) или двухфазных смесей (TiC + α-Ti) [6-9]. В работах [7-9] помимо линий ТіС и α-Ті на дифрактограммах отожженных порошков присутствуют линии неидентифицированной фазы. Анализ данных [10-12] показал, что эти линии относятся, вероятнее всего, к фазе гексагонального карбогидрида титана, который обладает достаточно высокой термической стабильностью. Ранее данную фазу получали только методами СВС и высокотемпературного спекания [10-12]. Использование жидкофазного МС может позволить получать карбиды и карбогидриды титана в связках из любых переходных металлов. Медь, легированная дисперсными добавками переходных металлов, эффективно заменяет дорогостоящую и токсичную кобальтовую связку в твердых сплавах. Легирование медной связки хромом и никелем способствует повышению прочности и коррозионной стойкости сплавов. К тому же при МС титана с медью, хромом и никелем могут формироваться интерметаллидные фазы, которые также способствуют повышению прочности, твердости и износостойкости как связки, так и композита в целом. Фазообразование при МС в системе Ті-С-Н-Си, а также структурно-фазовое состояние и свойства компактированных образцов остаются не изученными.

Целью работы было изучение структурно-фазового состава композитов Ti-C-Cu(Ni,Cr), полученных механосинтезом в органических средах (петролейный эфир, ксилол) и последующим магнитно-импульсным прессованием порошков, и оценка их свойств — плотности, микротвёрдости и износостойкости.

2. Образцы и методы

Для исследования выбраны концентрации Ті, Си, Сг и Ni, обеспечивающие состав композита TiC(90 об.%) - Cu(Ni,Cr)(10 об.%). Соотношение меди к общему содержанию хрома и/или никеля составляло 80:20. Синтез проводили в шаровой планетарной мельнице "Fritsch P-7". Контейнеры и размольные шары изготовлены из стали ШХ15. Использовали порошки титана (99.02 вес.%), меди (99.72 вес.%), никеля (99.50 вес.%) и хрома (99.92 вес.%). Контейнеры полностью заполняли петролейным эфиром или ксилолом, время механосинтеза — 3 и 6 ч. Образцы, полученные в петролейном эфире, обозначены РЗ и Р6 (цифра соответствует длительности механосинтеза), в ксилоле — X3 и X6, легированные никелем — X6Ni, хромом — X6Cr, никелем и хромом — X6NiCr. Магнитно-импульсное прессование проводили при 500°С в вакууме (остаточное давление 5-10 Па), с предварительной дегазацией в течение 4 ч. Амплитуда импульсов давления составляла ~1.5 ГПа, длительность — 300 мкс. Структурно-фазовое состояние образцов оценивали методом рентгеновской дифракции на дифрактометре MiniFlex (Rigaku) в Со-К излучении. Оценка микроструктурного состояния образцов проводилась на электронном микроскопе VEGA 3 LMN (TESCAN) с системой рентгеновского энергодисперсионного микроанализа INCA Energy 250/X-max 20 (Oxford Instruments) при ускоряющем напряжении 20 кВ с предварительным химическим травлением полированных образцов. Измерения плотности прессовок проведены гидростатическим и геометрическим методами. Микротвёрдость по Виккерсу определена на приборе ПМТ-3 по десяти измерениям при нагрузке 100 г. Исследования абразивной износостойкости проводили на трёхкоординатном фрезерном станке с ЧПУ "КХЗА" (Profi, Германия) [13] с использованием электрокорундовых шкурок на тканевой основе КК19XW с разным размером частиц абразива — М40 (28-40 мкм), 4-Н (40-50 мкм) и 5-Н (50-63 мкм). Длина пути движения образца составляла 285 мм, скорость поступательного перемещения — 750 мм/мин, частота вращения вокруг своей оси — 750 мин⁻¹. Удельная нагрузка составляла около 0.014 H/мм². Массовый износ определяли как среднее значение по трём измерениям на аналитических весах ВЛА-200г-М. Погрешность определения массы ±2 мг. Для сравнения при тех же условиях получены величины износостойкости образцов из промышленных материалов: стали У13 (St13) и сплава T5K10 (85 вес.% WC, 6 вес.% TiC, 9 вес.% Co).

3. Результаты и обсуждение

В фазовом составе полученных композитов (рис. 1 и табл. 1) присутствуют интерметаллиды CuTi и CuTi, а также фазы карбида (Fm3m) и карбогидрида титана Ті₂СН₀₆ с пространственной структурой *P-3m1*. В композите, полученном в петролейном эфире в течение 3 часов, сохранился титан, что свидетельствует о незавершенности процесса механосинтеза карбогидрида титана. Механосинтез в ксилоле в течение того же времени позволяет получать композиты с двухфазной структурой Ті₂CH_{0.6}+CuTi₂. При увеличении времени синтеза до 6 ч, помимо Ti₂CH_{0.6} и CuTi₂ появляются фазы СиТі, ТіС и α-Fe. Процесс механосинтеза в ароматических углеводородах (ксилол) идет более интенсивно [14], что позволяет получить композиты, в составе которых наряду с карбогидридом присутствуют и карбид титана. Параметр кубической решётки карбида титана (0.4286-0.4290 нм) существенно снижен относительно значения для стехиометрического TiC (0.4328 нм) вследствие недостатка углерода. Легирование никелем и/или хромом приводит к снижению доли TiC.

На рис. 2а – 2с приведены электронно-микроскопические изображения поверхности композита, полученного при механосинтезе в петролейном эфире в течение 3 часов. По краям круглого образца заметна пористость, центр выглядит достаточно плотным (рис. 2a,b). Композит имеет слоистую микроструктуру (рис. 2c): светлые слои интерметаллида CuTi₂ чередуются с более тёмными слоями карбогидрида Ti₂CH_{0.6}. Толщина слоёв в среднем составляет 50 – 100 нм. В табл. 2 показан химический состав разных участков поверхности. Усреднённое по поверхности соотношение Ti:Cu соответствует заложенному, однако содержание углерода явно недостаточно для образования стехиометрического TiC.

Плотность и микротвёрдость композитов приведены в табл. 3. На основании результатов количественного фазового анализа и известных величин плотности отдельных фаз были рассчитаны значения теоретической и относительной плотностей композитов. Плотность

Рис. 1. Рентгеновские дифрактограммы. **Fig. 1.** X-ray diffraction patterns.

Табл. 1. Фазовый состав (об.%) образцов. **Table 1.** Phase composition (vol%) of samples.

образец	об.% / vol%					
sample	α-Ti	TiC	Ti ₂ CH _{0.6}	CuTi ₂	CuTi	α-Fe
P3	17	0	53	30	0	0
P6	0	0	77	14	9	0
X3	0	0	66	34	0	0
X6	0	21	55	11	12	1
X6Ni	0	14	60	13	12	1
X6Cr	0	13	63	14	9	1
X6NiCr	0	9	67	13	10	1

Табл. 2. Состав (вес.%) в разных областях (см. рис. 3) поверхности образца РЗ.

Table 2. Composition (wt%) of different parts of surface of the sa	ımple
P3 (see Fig. 3).	

исх. init.	Ti	Cu	С	Fe	0	Ti:Cu
	66.5	16.8	_	_	_	80:20
1	65.4	24.2	7.4	3.0		73:27
2	73.4	18.3	7.0	0.8	0.5	80:20
3	39.2	8.4	30.4	1.2	20.8	82:18

Рис. 2. Электронно-микроскопические изображения (а) всей поверхности композита P3, (b) его края и (c) центральной части. **Fig. 2.** SEM images of the (a) whole surface of P3 composite, its (b) border and (c) central parts.

образец sample	ρ (g/cm ³)	ρ (%)	HV (GPa)
P3	4.60(5)	95	5.1(8)
P6	4.51(5)	94	4.4(3)
X3	4.44(5)	91	4.9(4)
X6	4.41(5)	89	5.2(5)
X6Ni	4.39(5)	88	5.0(4)
X6Cr	4.29(5)	87	4.7(3)
X6NiCr	4.28(5)	88	4.4(4)

Табл. 3. Плотность и микротвёрдость образцов. **Table 3.** Density and microhardness of the samples.

составляет 87–95% от теоретических значений. Микротвёрдость композитов 4.4–5.2 ГПа ниже, чем микротвёрдость промышленного сплава Т5К10 —14 ГПа. По-видимому, меньшая микротвёрдость объясняется свойствами самой фазы карбогидрида титана. Литературных данных по микротвёрдости карбогидридов титана не найдено.

Значения величин абразивного износа композитов (рис. 3) в среднем в десять раз ниже значений для стали У13 и в сорок раз больше значений для твёрдого сплава Т5К10. По-видимому, меньшая износостой-кость полученных композитов по сравнению со сплавом Т5К10 обусловлена, прежде всего, природой фазы гексагонального карбогидрида титана. Более низкие величины износа получены для композитов, синтезированных в течение 6 ч, что связано с меньшей долей интерметаллидных фаз и большей долей карбогидрида. Уровень износостойкости композитов не чувствителен к изменению количества Fe. При введении Ni и/или Cr наблюдается снижение доли TiC при одновременном росте доли Ti₂CH_{0.6}, что способствует ухудшению износостойкости.

4. Заключение

Механосинтезом в жидких органических средах (предельном углеводороде — петролейном эфире и ароматическом углеводороде — ксилоле) с последующим магнитно-импульсным прессованием получены композиты (Ti₂CH_{0.6}, TiC) + (CuTi₂, CuTi) с микротвёрдостью ~5 ГПа и с уровнем износостойкости на порядок выше, чем для стали У13.

Увеличение длительности механообработки способствует увеличению доли фазы Ti₂CH_{0.6} и, соответственно, снижению доли интерметаллидных фаз, что приводит к повышению износостойкости. Легирование Cr и/или Ni приводит к уменьшению доли TiC и снижению износостойкости. Присутствие до 3 вес.% железа не влияет на показатели микротвёрдости и износостойкости.

Благодарность/Aknowledgements. Работа выполнена в рамках гос. задания ФАНО России, № гос. регистрации НИР АААА-А17-117022250038-7, частично поддержана Программой Президиума УрО РАН, № 15-17-12-26.

Рис. 3. Диаграммы износа композитов. **Fig. 3.** Wear resistance diagrams of the composites.

Литература/References

- A.K. Garbuzova, G.V. Galevsky, V.V. Rudneva, L.S. Shiryaeva. Vestn. Sib. Industr. Univ. 1(7), 34 (2014). (in Russian) [А.К. Гарбузова, Г.В. Галевский, В. В. Руднева, Л. С. Ширяева. Вестн. Сиб. гос. индустр. унив. 1(7), 34 (2014).]
- B.H. Lohse, A. Calka, D. Wexler. J. Mater. Sci. 42, 669 (2007), DOI: 10.1007/s10853-006-0291-5
- S.-M. Hong, J.-J. Park, E.-K. Park, K.-Y. Kim, J.-G. Lee, M.-K. Lee, Ch.-K. Rhee, J.K. Lee. Powd. Technol. 274, 393 (2015), https://doi.org/10.1016/j.powtec.2015.01.047
- 4. L.L. Ye, and M.X. Quan. NanoStruct. Mater. 5(1), 25 (1995), https://doi.org/10.1016/0965-9773(95)00012-4
- M. Sherif El-Eskandarany. J. Alloys Compnd. 305, 225 (2000), https://doi.org/10.1016/S0925-8388(00)00692-7
- T. Suzuki, M. Nagumo. Scr. Metall. Mater. 27(10), 1413 (1992), https://doi.org/10.1016/0956-716X(92)90093-T
- T. Suzuki, M. Nagumo. Scr. Metall. Mater. 32(8), 1215 (1995), https://doi.org/10.1016/0956-716X(95)00128-I
- 8. M. Nagumo, Τ. Suzuki, and К. Tsuchida. Mater. Sci. Forum Vols. Trans. Switzerland: Publications. 225 - 227, 581 Tech. (1996),DOI:10.4028/www.scientific.net/MSF.225-227.581
- M. Nagumo. Mater. Trans., JIM. 36 (2), 170 (1995), http://doi.org/10.2320/matertrans1989.36.170
- 10. J. Rexer. Ternary metal-carbon-hydrogen compounds of some transition metals. Retrospective theses and dissertations. Paper **2073**, 44 (1962).
- I. Khidirov, B.B. Mirzaev, N.N. Mukhtarova, Kh.M. Kholmedov, S.Yu. Zaginaichenko, D.V. In: B. Baranowski, S.Y. Zaginaichenko, D.V. Schur, V.V. Skorokhod, A. Veziroglu (eds) Carbon Nanomaterials in Clean Energy Hydrogen Systems. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, 663 (2007), DOI: 10.1007/978-1-4020-8898-8_83
- 12. I. Khidirov. Russ. J. Inorg. Chem. 62(4), 498 (2017).
- V.V. Tarasov, S.Yu. Lokhanina, A.V. Churkin. Diagn. Mater. **76**(4), 57 (2010). (in Russian) [В.В. Тарасов, С.Ю. Лоханина, А.В. Чуркин. Зав. лаб. Диагн. матер. **76**(4), 57 (2010).]
- S.F. Lomayeva. Phys. Met. Metallogr. (in Russian) [С.Ф. Ломаева. Физ. Мет. Металловед. 104(4), 403 (2007).], DOI: 10.1134/S0031918X07100092