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Monoatomic carbon chain (carbyne) can exist in two different modifications: cumulene with double chemical bonds between
its atoms, and polyyne with alternation of single and triple bonds. In our previous paper [Letters on materials 6 (2), 146-151
(2016)], we have discussed a new physical phenomenon which was revealed in cumulene chains under uniform strain. It was
found that above 11.2% strain softening of 7-mode atomic vibrations takes place in some range of its amplitude. Condensation
(«freezing») of this soft mode leads to structural phase transition of displacement type. It is the Peierls phase transition which
was found earlier in [Nano Lett. 14, 4224 - 4229 (2014)] with the aid of a different approach. The above phenomenon occurs
due to the fact that old atomic equilibrium positions (EQPs), near which atoms vibrate in the case of small strain, lose their
stability and two new EQPs appear near each of them. The 7-mode softening corresponds to vibrations in the vicinity of these
new EQPs. In the present paper we discuss the problem of stability of the new EQPs, as well as a possibility of condensation in
cumulene of two other symmetry-determined nonlinear normal modes, different from the 7-mode. Inferences of this paper
may be useful for comparison of the results, obtained by methods of molecular dynamics, with those obtained with the aid of
ab initio simulations based on the density functional theory in studying different physical phenomena.
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O6 ycTOYNMBOCTY HETNHETHBIX AaTOMHBIX KOMeOaHmit
B PACTSHYTHIX YITIEPOJHBIX LIeNIOYKaX
Yeunn 'M.", Cusunnes [I.A., Yconbues O.A.
'gchechin@gmail.com
T0>ubiit Pegepanbubii Yausepcutert, yi. 3opre, 5, 344090, Poctos-a-Jlony, Poccus

MoHoaTOMHas yIylepofiHas Ilenodka (KapOuH) MOXeT CYLIeCTBOBAaTh B IByX Pas/IMYHBIX MOAU(UKAIAX: KYMY/IeH, KOTO-
PbIil XapaKTepU3yeTCcs JBOMHBIMU XMMMWYECKUMU CBA3AMM MEXIY aTOMaMy, U MOJIMUH, B KOTOPOM MMeEeT MeCTO 4Yepefio-
BaHJe OJVHAPHBIX U TPONHBIX CBA3eil. B mpenbimymielt Hamrell craTbe [Letters on materials 6 (2), 146-151 (2016)] 6bu10
0OHapy>XKeHO HOBOe (pU3MUeCcKoe sABJIEHNE B IIeII0YKaX KyMy/IeHa, IOBepPTHYThIX OFHOPOTHOMY pacTsKeHuo. Oka3anocs,
YTO IpU pacTsDKeHUsX Boiiie 11.2% HabmogaeTcsi cMArdeHrne arTOMHBIX Ko/ieOaHmiA, OMMChIBAEMBIX 7I-MOJO B HEKOTOPOM
uHTepBae eé aMITyxn. KongeHcanus («3aMep3aHue») 9TOI MATKOM MOJBI IPUBOAUT K CTPYKTYpHOMY (haszoBoMy Iepe-
XOJy TUIIa CMellleHnA. DTOT Hepexox ABsgeTca (a3oBbIM IepexonoM Ilasiepica, KOTOpBIL OB OOHAPYXKeH paHee B paboTe
[Nano Lett. 14, 4224 - 4229 (2014)], HO B paMKaxX OT/IMYHOTO OT MCIIOJIb30BAHHOI'O HaMI NOfIX0Ofia. BhlllleykasaHHOe sABJICHNE
00YC/IOB/IEHO NOTEpell YCTOMYMBOCTY CTApbIX IooKeHuil paBHOBecusA (EQPs), OTHOCUTEIPHO KOTOPBIX aTOMBI YI/Iepofia
COBEpIIAIOT KO/IeOaHysA PV MaJIbIX PacTsDKEHMAX, I BOSHUKHOBEHVEM OKO/IO KaXJOT0 U3 HUX ABYX HOBbIX EQPs. Cmsrye-
HIIe 7T-MOJbI COOTBETCTBYeT KoJleb6aHUAM aTOMOB YIVIepofia B OKpecTHOCTY 9T1X HOBbIX EQPs. B HacTosmIelt pabore ucce-
IyeTcs MpobieMa yCTOYMBOCTY HOBBIX IIOJIOKEHMII PaBHOBECHU:, @ TAaKXKe BO3MOXKHOCTb KOHIEHCAIMU B KyMYJIeHe IBYX
APYTYUX CUMMETPUITHO-00YC/IOBIEHHBIX HeIMHETHBIX HOPMaJIbHBIX MOJ, OT/IMYHBIX OT 7T-MOJIbL. Pe3y/bTaThl JaHHOI pabOThI
MOTYT OKa3aTbCA IONE3HBIMU Il CPAaBHEHNA PACYETOB, IPOBEIEHHBIX C TIOMOLILI0 METOJIOB MOJIEKY/IAPHON JUMHAMMKI,
C TIePBONPVHIVIIHBIMY PacyéTaMyi, BBIIOIHEHBIMI B PaMKax Teopuy (QyHKIVIOHa/IA IVIOTHOCTH, IIPY VICCTIeOBAaHNUN pas-
MVYHBIX PU3UYECKNX SBIEHUIA.

KiroueBble c10Ba: yIepofgHble LIEIIOYKI, HelIMHel Hble HOpMa/IbHble MOZbI, HerapMOHIYeCKIIe KO/IeOaHNs, IePBOIPMHINIIHbIE PACIETEL,
(basoBbIe Iepexobl.
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1. Introduction

Carbyne represents a chain of carbon atoms and can exist
in two different forms. Cumulene, whose chemical formula
is (=C=C=)_, represents more symmetrical structure with
double bonds between all its atoms, while polyyne with
chemical formula (~C=C-), represents carbon chain with
alternating single and triple bonds. There is one carbon atom
in the unit cell of cumulene and there are two atoms in the
unit cell of polyyne.

Because of many unique mechanical, physical and
chemical properties carbyne is considered as perspective
material for various nanodevices, for hydrogen storage, etc.
(see [1-5] and papers cited therein).

Chemical synthesis of pure carbyne chains and their
experimental study are very difficult and, therefore,
theoretical ab initio investigations, in particular those
based on the density functional theory (DFT), play a rather
important role for prediction of its properties and for treating
different physical phenomena, which are possible in this
material. DFT computer simulations lead to many interesting
results on carbyne chains. Especially we would like to refer to
the papers [1-4] of Rice University group in Houston (USA)
and to the paper [5], which are close to the subject of our own
investigation.

During the study of different types of nonlinear atomic
vibrations in strained cumulene chains, we revealed an
unexpected phenomenon of softening of the longitudinal
nm-mode vibrations above some critical value of the strain.
Results of this study were partially published in the paper [6].
They can be summarized as follows.

For strains lower than # = 11% cumulene demonstrates
monotonic hard type of nonlinearity (the frequency increases
with increasing the m-mode amplitude a). However, for
> 11.2% there is a certain range of amplitudes a in which
soft nonlinearity occurs, namely, the frequency of the 7-mode
abruptly decreases and then again begins to increase.

The phenomenon of vibrational modes softening is
well known in the theory of structural phase transitions
[7] where by condensation (“freezing”) of such modes one
tries to explain the nature of the displacement-type phase
transitions. This is the so-called concept of soft modes. 1t is
essential that in the majority of the papers on this subject,
soft modes are treated in purely phenomenological manner
with some vague arguments about changing of electron-
phonon interactions in crystal under change of such external
parameters as temperature and pressure. Unlike these works,
in our study a soft vibrational mode in cumulene appears as a
direct result of the ab initio simulation without any additional
assumptions.

The condensation of the m-mode induces the Peierls
phase transition associated with doubling of the unit cell of
cumulene and, as a consequence, this material transforms
into the polyyne form of carbyne. The physical nature of this
phenomenon can be explained by the stability loss of the
old equilibrium positions (EQPs) of the carbon atoms and
appearance of two new equilibrium positions near each of
them.

In the excellent paper [1], the structural transformation
of cumulene under certain strain was revealed two years

before the publication of our paper also by DFTmethods, but
in the framework of another approach. Comparison of our
results with those from [1] will be done bellow!.

We were able to explain the nature of 7-mode softening
by considering potential energy profiles obtained by ab initio
DFT-simulations. Moreover, we have introduced a simple
classical model, which explains all observed phenomena
in cumulene under strain. This model represents a chain
of mass points whose interactions are described by the
Lennard-Jones potential (L-J chain). Such model allows one
to understand the cause of appearance of new equilibrium
positions near old ones when cumulene undergoes an
appropriate strain.

Note that in [1] another simple model was introduced
to explain the properties of the Peierls phase transition.
The authors of this paper considered quantum-mechanical
motion of the atom moving in a double-well potential
constructed by DFT-simulations. They studied the evolution
of several lowest energy levels in this potential with changing
of its form under increase of the cumulene strain.

In our interpretation, as well as in the software package
ABINIT [8, 9], which we used for our simulations, nuclear
motion is treated by classical mechanics, while quantum
approach is used only for electron subsystem (Kohn-Sham
equations [10] are solved for every change of nuclear
configuration).

The main ab initio results obtained in our work and in the
paper [1] are sufficiently close to each other. Some discrepancy
can be explained by different approximations used in the
framework of DFT-approach (different exchangecorrelation
functionals, different sets of basis functions for solving
KohnSham equations, different realization of the numerical
methods in packages ABINIT and VASP, etc.). Nevertheless,
our results and those from [1] are fully identical qualitatively
(detailed comparison will be presented elsewhere).

Importance of studying Peierls phase transition in the
carbon chains is connected with the radical change of carbyne
electron spectrum induced by this transformation. Indeed,
it leads to appearing of an energy gap in this spectrum and,
as a consequence, the conductive cumulene transforms into
polyyne that becomes an insulator or semiconductor. In turn,
this phenomenon opens perspectives to control electrical
behavior of carbyne by mechanical strain [1].

In the present paper, we study the stability of the above-
discussed new equilibrium positions, both in the framework
of ab initio approach and the simple LennardJones model.
In this way, we have revealed some unexpected properties.
We feel that it is essential to keep them in mind for any
comparison of ab initio results with those obtained by the
methods of molecular dynamics.

With the aid of our approach combined with some
group-theoretical methods [11] we predict the possibility
of existence of two new types of carbon chains, besides
cumulene and polyyne. They both possess alternation of
bond lengths (BLA), but with different alternating schemes
compared to that of the polyyne.

1 Unfortunately, we were not aware of the paper [1] when prepared our

own paper [6].
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2. Mathematical models and
numerical experiments

We consider longitudinal nonlinear atomic vibrations in
the uniformly strained chain. This strain is modeled by an
artificial increase of the unit cell size (R) with respect to that
of the chain without strain (R ). Speaking about the strain of
the chain by # per cent, we mean that R = R (1 + 7).

In the present paper, we use two different mathematical
models for studying atomic vibrations, “DFT model” and “L-]
model”. In both models, the periodic boundary conditions
are assumed.

In the DFT model, the quantum-mechanical approach is
used to describe interatomic interactions in the framework
of the density functional theory [10]. For the computer
simulations, wehave used the software package ABINIT [8 - 9].
Some approximations are made for studying atomic dynamics.
The Born-Oppenheimer approach is used to separate the
fast motion of electrons and slow motion of nuclei. At each
time-step for fixed position of nuclei, self-consistent electron
density distribution is calculated by solving Kohn-Sham
quantum-mechanical equations. Then forces acting on the
nuclei are computed, and their new configuration is found
by performing one step of solution of the classical dynamical
equations. For this new configuration, the procedure of self-
consistency for the electron subsystem is repeated.

All our calculations are performed in the framework of
the local density approximation (LDA). Pseudo-potentials
by Troullier-Martins are used to describe the field of the
carbon atoms inner shells in the process of the Kohn-Sham
equations solving with the aid of the plane waves basis (with
energy cutoff equal to 1360 eV). The convergence for energy
is chosen as 107 eV between two steps.

The second our model is a conventional one in the
framework of the classical molecular dynamics. The main
idea of this approach can be formulated as follows. Molecules
(atoms) are replaced by mass points whose interactions
are described with the aid of some phenomenological
potentials. For the obtained dynamical system, equations of
classical mechanics are solved. In the framework of quantum
mechanics, such approach cannot be considered as adequate,
because it is difficult or impossible to find potentials, which
are good enough to take into account the influence of atomic
electron shells on dynamical properties of the original
physical system. That is why one has to use very complicated
many-particle potentials, which possess different forms for
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different geometry of the interacting atoms and contain
phenomenological constants defined by huge tables.

However, in some cases, reasonable results can be obtained
even with the aid of simple pair potentials, such as those by
Morse, Lennard-Jones, etc. Bellow, we try to explain results,
obtained by ab initio calculations for the 7-mode dynamics in
carbyne, using the model of a chain whose particles interact
via the Lennard-Jones potential.

All our numerical experiments in the framework of the
L-J model were performed with the aid of the Runge-Kutta
method realized in the software package MAPLE-11.

3. m-mode vibrations and structural atomic
transformation in strained carbon chains

In this section, we reproduce some results from [6], which
are necessary for our further discussion.

1) Above a certain critical value of the strain, old
equilibrium positions of all carbon atoms lose their stability
and two new EQPs appear near each of the old ones. In turn,
this phenomenon results in softening of m-mode in some
range of its amplitude because atoms begin to vibrate about
new EQPs.

2) Condensation of the m-mode leads to a new atomic
equilibrium configuration that corresponds to the Peierls
phase transition. After this transition, the unit cell turns out
to be twice as large than that of cumulene, and the carbon
chain transforms into another carbyne form, polyyne, with
bond lengths alternation. As was already mentioned, this
phenomenon is of great physical importance, because such
atomic transformation leads to qualitative change in carbyne
electron spectrum.

3) The clear interpretation of the above phenomenon of
appearing of new equilibrium positions can be given with the
aid of the simple classical model representing the mass-point
chain whose interparticle interactions are described by the
Lennard-Jones potential.

4. Study of stability of the carbyne new
equilibrium atomic positions in the
framework of the Lennard-Jones model

In Fig. 1, we present potential energy profile corresponding
to the 7-mode vibrations in one unit cell of cumulene under
the strain n = 15% (this profile was obtained in [6] with the
aid of DFT simulation).

T
-0,02

T T T T T T
0,00 0,02 0,04 0,06 0,08 0,10

amplitude (angstrom)

Fig. 1. The points A and B (B") correspond to the old and new equilibrium positions of carbon atom, respectively. The solid curve shows the
ab initio results, while the appropriate fitting in the framework of the Lennard-Jones model is shown by the dashed curve.
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The set of atomic displacements X(¢) = [x,(£), x,(£), ..., x,(£)]
of the N-particle carbon chain for the 7-mode vibrational
regime at a fixed time ¢ = £, can be written as follows:

X(t,) = a(t,), ~a(t)|a(t), ~a(t) ... a(t), ~a(t)]. (1)

In this pattern, all x(¢) with odd numbers are equal to
a(t,), while those with even numbers are equal to —a(t,).
Thus, all neighboring atoms vibrate out of phase with equal
amplitudes as shown in Fig. 2.

From this figure, one can see that at the given instant (¢,
the following alternation of the atomic distances occurs:

BLA =[I,L|l,L]..|1,L] (2)

Herel =1 —a,l,=1 +a,whilel is the equilibrium distance
between atoms in the strained cumulene and a = a(t,). This
BLA corresponds to the polyyne form of carbyne.

If we consider all atoms at new EQPs, i.e. at the distance a,
from the old EQPs, then the bond lengths in Eq. 2 are equal to

I =1 —-a,l =1 +a,and the difference Al of these bonds is
Al=2a, (3)

Certainly, the parameter a, depends on the value of the
strain # and this dependence a (#) is presented in Fig. 3.

In Fig. 1, we depict by the dashed line the energy profile
obtained for the L-J chain by a certain fitting [6]. The Lennard-
Jones potential is determined by two phenomenological
parameters which can be found from the condition of its
coincidence with the ab initio profile at two points, A and B.
Fig. 1 corresponds to the strain # = 15% and for this case is
equal to 0.075 A.

Appearance of new equilibrium positions can be easily
explained in the framework of the L-J chain model [6].
Indeed, they appear even in the simplest case of two fixed
atoms (say, #1 and #3) with another atom (#2), which may be
displaced at different distance from its EQP at the middle of

%i‘i— oo

Fig.2. Bond lengths alternation in strained carbyne for the pattern (1)
with a(to) = a. Here, for a > 0, l1 and l2 are short and long bonds,
respectively, and vice versa for a < 0.

ao, A

n, %

Fig. 3. Dependence of the 7-mode parameter a, on the strain # which
corresponds to the minimum of potential energy (point B in Fig. 1).

the atoms #1 and #3. For finding any equilibrium position (x)
of the atom #2, we must equate by absolute value the forces
f(x) and f (x) acting on it from the left and right neighboring
atoms (these forces possess opposite directions). Then the
equation f(x) = f (x) for the forces, generated by the Lennard-
Jones potential, represents a nonlinear algebraic equation
that can be solved by a simple graphic method. Intersections
of the graphs of f(x) and f (x) turn out to be the equilibrium
positions of the atom #2 between two fixed atoms, #1 and #3.
In this way, we can visually find the cause of appearance of
new equilibrium positions>

In [6], we have solved the problem of existence of the
new equilibrium positions for strained carbon chains in
the framework of DFT ab initio approach, as well as for the
Lennard-Jones model, while here we consider the problem of
their stability. This problem can be formulated as follows. We
must verify if a given new equilibrium position corresponds
to a certain minimum of the potential energy U(X) which is
a function of N-dimensional vector X = [x,x,,...,x,] of all
degrees of freedom of our chain. Note, that the minimum
in Fig. 1 corresponds to the one-dimensional function
u(a), where a is the m-mode amplitude, and the vector
X(t) = [a, —ala, —a|...|a, —a] determines the position of this
minimum in the N-dimensional space.

For example, below we study stability of the new
equilibrium positions for the carbon chain of N = 8 atoms.

Let us again consider the point B at the bottom of the
right potential well in Fig. 1. If B represents a minimum of the
potential energy U(X) in the full eight-dimensional space of
all possible displacements, then infinitesimal shift from this
point in any direction leads to increase of the function U(X).

It is well known that the local extremum of the function
U(X) in many-dimensional space can be of different type
(minimum, maximum or a saddle point). The most effective
way to analyze the type of a given extremum point X (it
determines the equilibrium position) can be carried out for
the L-] model by the following procedure.

Let us expand the function U(X) near the point X into
many-dimensional Taylor series and restrict it by quadratic
terms only (this procedure corresponds to analyzing the
harmonic approximation in the framework of dynamical
approach). The obtained quadratic form is then transformed
by a certain linear transformation of variables to the canonical
form, which represents a superposition only of squares of new
variables with some coefficients )Lj (j=1..N). These coeficients
can be found by diagonalization of the matrix of the original
quadratic form as its eigenvalues. The extremum X will be a
minimum only if A. > 0 for all j = 1..N. If a certain eigenvalue
turns out to be negative (/1 < 0), then any infinitesimal shift
by y from the point X along the line X = X + y§,, where
§,, is the eigenvector correspondlng to A, leads to decrease
of the function U(X) and, therefore, X, is a saddle point (or
maximum, if all /\j <0).

With the aid of the above procedure, we have obtained
the following results on stability of the new EQPs for the
eightparticle L-J chain under uniform strain # = 15%: A, = 0,
A, = +884, A = A, = +100.6, \_ = +110.6, A_= A= -12.2,

2 The similar procedure can be also carried out for L-]J chains with an

arbitrary number of atoms.
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Ay = —22.2 (these values were rounded up to 2 figures after
decimal point). This result is disappointing since the new EQP
turns out to be a saddle point (three /\j < 0) and, therefore, it
is unstable.

To verify this sad result, obtained in the framework of
the L] model, we have found the energy profiles along the
eigenvectors &, corresponding to all A, (j = 1..8). These vectors
are listed in Table 1.

Let us comment on this table. All eigenvectors & are
orthogonal to each other and are linear independent.
Therefore, their complete set can be used as a basis in eight-
dimensional space.

Note that these vectors can be obtained without
studying of any dynamical model (in particular, without
considering the L-J chain). One can find them with group-
theoretical methods only. Indeed, they are basis vectors of the
irreducible representations (irreps) of the symmetry group
C,, constructed in the eightdimensional space of all atomic
displacements of the chain. In the present paper, we will not
consider this problem in detail, and restrict ourselves only
with some comments on the group C, .

In Fig. 4, we present our eight-particle chain with
periodic boundary conditions as a ring where arrows show
the atomic displacements associated with the 7-mode pattern
la, —ala, —ala, —a|a, —a]. For a = 0 the diagram in Fig. 4
possesses point symmetry group C,. This group contains
16 symmetry elements: 8 rotations around axis normal to
the plane of the figure and passing through the center of the
circle, as well as 8 mirror planes containing this axis. However,
for the case a # 0 the symmetry of the pattern decreases by
a factor two. Only eight elements of the above list survive:
4 rotations (by 0°, 90°, 180°, 270°) and 4 mirror planes (o, 0,,
0,, 0,). Therefore, the symmetry group of the displacement
pattern in Fig. 4 is equal to C, .

Onthe other hand, this group possesses 4 one-dimensional
irreps (I'l, T2, I'3, T4) and 1 two-dimensional irrep (I'5).
Namely, the basis vectors of these irreps are listed in Table 1.
Note that doubly degenerate eigenvalues correspond to the
twodimensional irrep.

Note that eigenvalues A, from Table 1 turn out to be not
important for our purpose (they depend on the value of the
strain), but signs of A, are important since they determine the
type of the extremum X of the function U(X).
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Now we can analyze the energy profiles U(X) along eight
lines X = X + &, (j = 1..8) in eight-dimensional space. Here
y is a sufficiently small number because we want to compare
the corresponding results with those obtained for energy
function considered as a quadratic form. The energy profiles
UX) = uj(y) for all basis directions EJ are depicted in Fig. 5.
We exclude the vector &, from our consideration because it
determines the direction along the 7-mode and, therefore, it
has no relation to stability of this mode.

The graphs from this figure fully confirm the previously
discussed results on stability properties of the new
equilibrium position X (see Table 1). Indeed, we see decrease

Table 1. Eigenvectors & (j = 1..8), which form the basis of eight-
dimensional space of atomic displacements for the chain of N = 8
atoms (a =0.071; b = 0.494; ¢ = 0.495; d = 0.079; e = 0.304; f = 0.401;
g=0.397; h = 0.298).

§ | A |Irreps Eigenvectors

&l o rr (11111111
El8sa| 2 [ 1|11 [-1]1]-1]1]-1
¢ (1006 T5 [ a|-b|c|d|-a|b|-c|-d
¢, |100.6 —c|-d|a|-blc|d]|-a|b
Elioe| T4 [1 1|11 ][1]-1]21
§ |-122] 15 |—-e| f | g|h|e|-f]|-g|-h
& | -122 —g|-h|-e| f | g|h|e]|-f
& 122216 [1 [1|-1[1 1 ][-1]-1]1

Fig. 4. Displacement pattern of the 7-mode for the chain with N =8
particles.
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~0,004  -0,003  -0,002 0,001 0 0,001 0,002 0,003 0,004 0,005
T

Fig. 5. Energy profiles for the L-J chain with N = 8 particles for all basis directions &, (j = 1..8) except &,.
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of the energy for A, < 0 (A, = A, A,), increase of the energy for
A;>0 (A, =2, 1) and constant energy for A, = 0.

Thus, the new EQP in carbyne with 15% strain which
corresponds to the vector X = [a, —a |a, —a,|a, —a |a, —a,]
with a, = 0.075 occurs to be unstable in the framework of the
Lennard-Jones model. It can be proved that this conclusion
is true for arbitrary number N of particles in the L-J chain.

5. Study of stability of new equilibrium
atomic positions in strained carbyne
with the aid of DFT simulations

The above described method can be easily applied to the
study of stability properties of new equilibrium positions
in strained carbyne in the framework of the ab initio DFT
approach.

In Fig. 6, we present potential energy profiles calculated
by ABINIT software package [8, 9] for 15% strained cumulene
chain of N = 8 atoms for basis directions § from Table 1
(&, is excluded).

The obtained results are unexpected, because the energy
profiles in Fig. 6, unlike those in Fig. 5, demonstrate minima
for all basis directions. Thus, the new equilibrium position, at
point B in Fig. 1, being unstable in the L-] model, turns out
to be stable in the framework of the DFT model. Why such
discrepancy does take place? We discuss this issue in the last
section of the present paper.

aterials 6 (4), 2016 pp. 309-316

6. Stability of the 7-mode atomic vibrations

Let us now consider the problem of stability of atomic
vibrations near the new equilibrium positions in strained
carbon chains.

In Fig. 7, we represent for 1 = 15% strain the time-
evolution of the carbon atom oscillations in the right potential
well (Fig. 1) approximately at the middle of its depth. The
dotted line corresponds to the DFT model, while the dashed
line demonstrates oscillations for the L-J model.

To analyze the stability of these oscillations we add to the
initial 7-mode profile

X(O) = [a(o)) _a(0)|a(0)’ _a(o)la(o)) _a(0)|a(0)) —a(O)],

a(0) = 0.075. (4)

a small perturbation in the form p&, with y =107, where &,
is the basis vector from Table 1, which corresponds to the
negative eigenvalue with maximal absolute value (A, = -22.2).
It is obvious from Fig. 7 that the solution of the Newton
ordinary differential equations, corresponding to the L]
model, demonstrates hard instability (dashed line) already at
ten oscillation periods (f = 10T). In contrast to this result,
one can see from Fig. 7 that the DFT solution for the same
initial conditions (dotted line) demonstrates a fine stability,
at least up to time interval ¢ = 1007. The small modulation of
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Fig. 6. Energy profiles for carbyne chain of N = 8 particles for basis directions § which are obtained in the framework of ab initio DFT model.
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the periodic oscillations in the DFT model is induced by the
above-mentioned perturbation y&, (y =10) artificially added
to the exactly periodic initial profile (4).

Thus, we can conclude that 7-mode atomic vibrations in
the L-J] model are unstable, while they demonstrate stability
in the DFT model (at least, by visual inspection). Remember,
that the analogical discrepancy between static properties
of the L-J model and the DFT model was discussed in the
previous section.

Because of importance of this conclusion, we verify by
the rigorous Floquet method that periodic atomic vibrations
in the L-J chain are indeed unstable. The similar stability
analysis for the DFT model was not carried out yet because of
some computational difficulties.

7. Discussion and conclusion

The present work is a continuation of our previous paper [6].
Both of these studies are devoted to analysis of longitudinal
nonlinear atomic vibrations in strained carbon chains in the
framework of ab initio DFT approach. Let us summarize the
obtained results.

In [6], we have revealed that under sufficiently large
uniform strain (1 > 11.2%) radical transformation of the
cumulene structure takes place as the result of condensation
of the 7-mode, which becomes a soft mode in a certain range
of its amplitude. Indeed, in this case, the old equilibrium
positions, around which carbon atoms vibrate in the case of
the small strain, lose their stability and two new EQPs arise
near each of them. This transformation corresponds to the
Peierls phase transition in onedimensional crystal and is
associated with doubling of the unit cell. As a result, carbyne
chain transforms from the cumulene to polyyne form. This
phase transition in strained carbyne chains was discovered
in the work [1], which was also carried out by ab initio DFT
simulations, but from another positions compared to those of
[6]. Indeed, we have studied nonlinear vibrations in carbyne
chains, while the authors of [1] explored their static structure.

As was emphasized in [1], the above phase transition is
a phenomenon of great physical importance because it leads
to a qualitative change in the electron spectrum of cumulene.
Indeed, as a result of appearance in this spectrum of energy
gap, conductive cumulene transforms into polyyne which is
insulator or semiconductor. In turn, it is expected that such
change in electrical properties under mechanical strain can
be used in some nanodevices.

In [1], a simple quantum-mechanical model of one
particle moving in double-well potential was introduced to
explain the properties of the Peierls phase transition found
in the framework of DFT approach. Unlike this, in [6], for
the same purpose, a simpler classical model was introduced,
which represents the chain of mass-points whose interactions
are described by the Lennard-Jones potential (L-]J chain).
Using this model, we were able to explain not only the
static properties, such as appearance of new EQPs, etc., but
also the properties of nonlinear vibrations near these new
equilibrium positions. Moreover, the approach developed
in [6] allows us to consider the condensation of two other
symmetry-determined Rosenberg nonlinear normal modes
discussed in [6] (besides the 7-mode), which correspond to

multiplication of vibrational unit cell three- or four-times
compared to that of the cumulene equilibrium state. In
turn, such approach leads to a prediction of possibility for
existence of two new forms of carbyne with the bond length
alternations different from that of polyyne (these results will
be published elsewhere).

Let us note that all types of symmetry-determined periodic
and quasiperiodic vibrations in physical systems with discrete
symmetries can be obtained with the aid of specific group-
theoretical methods developed in the theory of bushes of
nonlinear normal modes [12]. The application of this theory
to various mechanical systems can be found in [11-19].

Now let us return to consideration of stability properties
of the new EQPs and of the periodic oscillations in their
vicinity, which are discussed in Sections 3 and 4 of this paper.
We present there computational experiments demonstrating
that our Lennard-Jones model, which is rather accurate for
prediction of new static and dynamical properties of the
strained carbon chains, turns out to be fully unsatisfactory for
analyzing stability of new atomic equilibrium positions and
stability of oscillations around them. Now we can indicate the
following causes of such phenomenon.

As was already emphasized in Sec. 2, unlike the L-J
model, the DFT model is more adequate because it takes into
account electron shells of each carbon atom, which adapt to
any change in nuclear configuration, while the L-] model
deals with bare mass points. In other words, many degrees
of freedom correspond to each site in the DFT model,
while only one variable is associated with every site in the
Lennard-Jones model. There is also a mathematical cause of
the above discrepancy. Indeed, in the case of the L-] model,
we study the stability of a solution of ordinary differential
equations (classical Newton equations), while in the case of
the DFT model one must analyze the stability of a system
of cumbersome integro-differential equations (Kohn-Sham
quantum-mechanical equations).

Thus, the L-] model describes sufficiently well the
existence of new equilibrium positions in strained carbyne,
but it turns out to be unsatisfactory for analysis of their
stability. We feel that such discrepancy between the results
obtained by molecular dynamics methods and those by DFT-
simulations may be typical for different physical problems.
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