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Elastic torsion of cylindrically anisotropic nano/microtubes is examined by Saint-Venant approach. It is assumed that the
tubes were obtained by rolling the plates of the cubic crystals with plane orientation (011). The analytical expression for
the torsional stiffness of such nano/microtubes is obtained. It is found, that the torsional stiffness is dependent on the three
compliance coefficients of cubic crystal: thickness parameter, chirality angle and radius of the tube. Numerical analysis of
the torsional stiffness of nano/microtubes is given. It was shown that for most of crystals the dimensionless ratio of torsional
stiffness to torsional stiffness at zero chiral angle of nano/microtubes slightly varies with the thickness parameter of tubes.
Materials with the substantial change in the dimensionless ratio of torsional stiffnesses are found. It is shown, that the torsion of
chiral nano/microtubes obtained from cubic crystal plates in the absence of tensile forces is accompanied by linear Poynting’s
effect. Comparative analysis of the dimensionless ratios of torsional stiffness to torsional stiffness at zero chirality angle for
nano/microtubes obtained by rolling the crystal planes (001) and (011) is given. It is shown that the variability of torsional
stiffness for nano/microtubes obtained by rolling the crystal planes (011) is much higher than for nano/microtubes produced
by rolling the crystal planes (001). Comparative analysis of linear Poynting’s effect for nano/microtubes created by rolling the
crystal planes (001) and (011) is also presented.
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ns3 KYGI/I‘ICCKI/IX MAaTEepNanoBs, IIONTYY€HHDbIX CBOPAYMIBAHNIEM
Kpuctamopusmiaeckux miockocreii (011)
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B pamkax Teopum ynpyrocTy aHM3OTPOIIHOTO Tefla paCCMOTPEHO KpydeHUe IVIMHPUYIECKM-aHU30TPOIHbIX HAHO- ¥ MMU-
KpoTpybok MetopnoM CeH-BeHaHa. BbITo npefiionoxeHo, 4To HaHO- I MMKPOTPYOKY IIOTy4a/Iuch CBOpauMBaHeM KPUCTal-
JIMYeCKOI! IUIACTUHBI U3 KyOM4YeCKMX KPUCTA/UIOB ¢ opueHTanuel mwiockocty (011). TlomydeHo aHanmmuTU4eckoe BbIpajkeHuUe
KPYTWIBHON >KeCTKOCTH JUIA TaKUX HaHO- ¥ MUKpOTpyOok. HallieHo, 4To KpyTuIbHas SKeCTKOCTD 3aBUCUT OT TPeX MOJy/Iei
IIOfIAT/IMBOCTEY KyOM4ecKoro KpJCTalla, TapaMeTpa TONIIMHBI, YITIa XUPAJIbHOCTI U pajiryca TpyOKu. [laH YMCIeHHbIN aHamu3
KPYTWIbHBIX )K€CTKOCTEN HAHO- Y1 MUKPOTPYOOK 113 HEKOTOPBIX KyOM4eCcKVX MaTepyajIoB. AHaIN3 ITOKA3aJL, YTO /L1 OO/IbIIVH-
CTBa MarepnasoB Oe3pasMepHOE OTHOLICHYe KPYTWIBHON >KeCTKOCTI K KPYTVIBHOM KeCTKOCTY IIPY HYJIEBOM YITIe XMpPaJlb-
HOCTY JyI1 HAHO- Y MUKPOTPYOOK c/1ab0 MeHseTcs ¢ M3MeHeHVeM ITapaMeTpa TOJIVHBL. BbLAB/IeHbI MaTepyaIbl, A KOTOPBIX
eCTb CYLIeCTBEHHOE M3MeHeHe 6e3pa3MepHOro OTHOIIEHVS KPYTIUIbHBIX KecTKoCTell. ITokazaHo, 4To KpydeHMe XVpaabHbIX
HaHO- ¥l MMKPOTPYOOK 113 KyOMYeCKIX MaTepuajIoB laKe B OTCYTCTBYE PACTATVMBAIOLIVIX YCYINI COIPOBOXKIAETCS JTMHETHbIM
a¢dexrom IloitHTyHra. [JaH CpaBHUTENIbHbI aHa/MNM3 Oe3pasMepHbIX OTHOIIEHWII KPYTUIBHBIX eCTKOCTel K KPYTU/IbHbIM
JKeCTKOCTAM IIPY HYJIEBOM YIVIe XMPAJIbHOCTH [ HAHO- M MUKPOTPYOOK, ITONTy4eHHBIX CBOpaYMBaHMEM KPUCTA/UINYECKIX
wiockocret (001) u (011). ITokasaHo, 4TO M3MEHYMBOCTD KPYTUIbHBIX XKECTKOCTE! /L1 HAHO- ¥ MUKPOTPYOOK, IOTyYeHHBIX
CBOpaYMBaHMeM KpUCTa/UINYeckyx iockoctey (011), okasbIBaeTCsA CYIeCTBEHHO BbIIIe, YeM /L1 HAHO- U MUKPOTPYOOK, I10-
JIy4eHHBIX CBOpadVBaHMeM KpUCTa/UIdeckux mwiockocteit (001). Taxoke IpoBeeH CpaBHUTENbHbI aHAIN3 JIMHETHOTO 9 ek-
Ta IToJHTIHTA /11 HAHO- ¥ MUKPOTPYOOK, IIOTy4eHHBIX CBOpaYVBaHIeM KPUCTA/UINYecKUX m1ockocreit (001) u (011).

KiroueBble c1oBa: HAHOTPYOKH, MUKPOTPYOKH, KpydeHue, annzorporus, adpdexr [ToitHTHHTa.
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1. Introduction

Many nano- and mesomaterials were synthesized in the
form of nanotubes and microtubes. Nano/microtubes were
obtained, for example, by rolling thin crystalline plates into
tubes [1-7]. This method makes it possible to obtain nano-
and microtubes from almost all crystalline materials.

To describe mechanical properties of nano- and
microtubes in the framework continuum mechanics it is
often used a model of a cylindrical shell (see, e.g., the reviews
[8,9]). A model of a hollow cylindrical rod was proposed in
[10-12]. This model is acceptable for describing the carbon
and non-carbon nano/microtubes with curvilinear cubic,
hexagonal, rhombohedral and tetragonal anisotropy. It has
been shown by the example of the problem on extension the
nano/microtubes obtained by rolling the crystal planes (001),
that such tubes can have negative Poisson’s ratio [10-12] and
manifest linear Poynting’s effect [13]. Below we will consider
the problem on torsion nano/microtubes, obtained by rolling
the cubic crystal planes (011), in the framework of the model
of a hollow cylindrical rod.

2. From rectilinear-anisotropic cubic crystals
to cylindrically anisotropic nano/microtubes

The method of rolling thin crystal plates is one of the most
effective methods of nanotubes and microtubes fabrication
from single crystals. The elastic properties of the produced
tubes can be described in terms of the elasticity theory, if the
thicknesses of their walls are significantly higher than the
atomic and interatomic distances, i.e. several nanometers [14].

We assume that the crystal plate with orientation (011)
is rolled into a cylindrical tube so that the axis which is
perpendicular to the plane (011) passes into the radial axis
of the tube. Other crystal axis which is rotated by an angle y
relative to the crystallographic axis in the plate corresponds
to the longitudinal axis of the tube (see Fig. 6 in [12]). The
symmetry of formed curvilinear anisotropic tube is reduced
relative to the initial cubic symmetry of the crystal due
to the rotation to the specified chiral angle. Its symmetry
corresponds to the symmetry of the monoclinic system with
thirteen compliance coefficients s, 51, s, , 5/, 50, 515, 51,5 Si.,
Sie> Sy S10 S, S5 depending on the chiral angle y and the
initial three cubic crystal compliances s, as follows

s1, =5, — 2Asin*ycos’y — 0.5Asin%y,

s, =s,, — 2Asin*ycos’y — 0.5Acos?y,
s;,=s,—0.5A, s =s_+15Asin’ycos’y,
si,=s,+0.5Asin%, s, =s,+0.5Ac0s?,

s, =8, +20Acos?y, s. =s, +2Asin?,
s, = Asin2y, s =0.5Asin2y, (1)
s, = 0.5Asin2y (1 — 3cos?y),
s, = 0.5Asin2y (1 - 3sin%),
s, =5, + 1.5Asin*2y,
2A=2s =25, =S,

The dependences of the coefficients s; on chiral angle are
periodic with period 7.

Curvilinear-anisotropic elasticity of nano/microtubes
thus characterized by linear equations of Hooke’s law

u =s o +s. 0 +s .0 —-s o,

2z 117 2z 127 pg 13 rr 16 ¢z
u, = 5,0, +S,, ,,+ $,,0, — 5;6%’
u =s.0_+ 5;3‘% +5,0 — 5;6%2, (2)
2u(pz = 5;60412 - S;GO-ZZ - 5;60—¢¢ =530,
2u_=s,.0_- S;SOW, 2uw =-s5,.0_+ 5;4%,.

3. Torsion of nano/microtubes obtained
by rolling the crystal planes (011)

We will consider the problem on torsion of curvilinear-
anisotropic nano/microtubes, obtained by rolling the crystal
planes (011) of a cubic crystal. Let the integral boundary
conditions

P=[0_dS=0, M = fa(pzrdS (3)

are satisfied at the ends of tubes (P, M_ are the total tensile
force and torsion moment, respectively). Tension is absent
and full torque is given. Local conditions of the absence of
stress on the sides of the hollow tubes, i.e. on the inner surface
r=r,and outer surface r = R =r,p, are assumed.

Later we will assume that there is an axially symmetric
radial-inhomogeneous stress state o (r), aw(r), a_ (1),
anp(r), o (1), o(pz(r). Then the equilibrium equations are
simplified

G‘/’w (r) = i(I/'Grr (r)):' (4)
4 drd
;(r%(r))ﬂ), ;(V o,,(r)=0. (5)

The last two equations (5) and the zero boundary conditions
on the side surfaces of the tube lead to am)(r) =0 (r) = 0. This
in turn leads to a simplification of the equations of Hooke’s
law, which will contain now three normal stresses o (), aw(r),
o_(r), and one shear stress aq)z(r). The deformations are also
radially inhomogeneous according to these equations. They
allow to obtain unambiguous displacements if the following
constraints are satisfied

u(r)=¢. u,,(r>=%(mw(r)>, u (=1, (6)

& =const, 7 =const.

The condition (6), together with the equilibrium equation
(4) and the equations of Hooke’s law allow us to express all
stresses through the one component o (r) that satisfies the
differential equation of the second order

d( d
—|r—(@o,.(r) |=a,0,()+a(-a,)e+a,(4-ay)rr, (7)
dr\ dr
where
2
— Inly — 1 — Iy~ 1
S T 2
byl — 1 11(22_t33)+t13_ 12
_ 1 816 (s = 21,,) + (255 = 8301, (8)
2= 4t — 2 g2 >
See tn( Iy t33)+t13 t
tmn = smn - SM(),smé N
566

The solution of this equation for the stress component ¢ (r)
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has the powerlike form

A
U,r(r)=a1£+a21'r0[r]+ZA+[rJ , A =1t a,. (9)
7 + r

The remaining stress components have a similar structure.
Using the equilibrium equations (4), (5), Hooke’s law (2), and
the additional conditions (6), we find

A
O'W(r)—a1£+2a21r0( }+2(1+/1)A( J R

0

tho (r)=[1-a, +1;)]e +|:_a2(2t12 +t13):|”b
Se6
A

=2l + 1, (14 A)]A (Lj , (10)

'

' S ' ' vt T
S660 4z =]+ a (st + 83 ~ Si6 2 13j &+
tl] tll
5, L 28,y r
| I+ ="+ a,| 285 + 83, — 8, —— | |71, | — |+
Seslni h "
t t &
+Z|:S36_S15]3+[S25 Si6 12](1"'}4)} [ j .
* Iy Iy T
The obtained representations of stress components
contain four parameters e, 7, A , A . The boundary conditions
of the stress absence on the inner and outer walls of the

cylindrical tubes allow us to express A , A through ¢, 7 as
follows

Y 2
p -1 pT-p
4 _alp/h_p,t‘g*'azp/a_p/l, "> o
A A
A =aq 1/1 L —E&+a, ’i ,0/1 7.
PP pr=pT

Here, the thickness parameter p = R/, is the ratio of the
outer radius to the inner radius of the tube.

The integration of ¢ _(r) and o, (r)r on the tube cross-
sectional area allows one to fulfill the integral conditions (2).
We ultimately obtain relationship between the parameters
&, 7, and the dependence of torsional stiffness C = M_ /7 on
the tube radius, ratio of internal and external radii p =R /7,,

compliances s, and chiral angle y (see expressions s, t,
thoughs Xm(l) (8))

e=Trr,,
2 lt +t
S AE A N
Se6 Iy 3
'2
vl‘ + 2t
+{l+ fq‘ﬁ +a (s +2s L ‘ZH’D
Seslin 4

t, ot pﬂﬁ3 1
+X| s Loyl i](l-r&)} ,
|: 36 l t“ ( 26 16 tll ﬁi +3

A A
_a(pT -p)+la(p™ -1
Q, = 7 — s
pE=—p7
Fz—rl/rz,
s p -1
1—‘1:|: = az(t13+2t12):| 3 -
S66
r=- /7]_:‘53_1 A _
ﬂ%;pw+qgl+ag#ﬂ/+2 ;grjjgy

2
-1
r2=[L—an+q9]p -

A +2

%znu+ma+zn74 .

ka—l
—.
B o
At zero chiral angle the result for torsional stiffness takes very
simple form

T
= (p' -1

=025,

C,=(|

The dimensionless ratio C/C, depends on the dimensionless
combinations of compliance coefficients, dimensionless
scaling parameter p and chiral angle y. Numerical analysis
of torsion was based on experimental data for the cubic
crystals from handbook [15] was performed for auxetic
nano/microtubes from Table 11 in [12]. The dimensionless
ratio C/C, is greater than one for the majority of the nano/
microtubes. However, it could be less than one for thin-
walled tubes from Yb, TmSe u Tm,_,Se. Examples of the
dependences of this ratio from p and X for nano/microtubes
of cubic crystals Tm ,Se and Cu are shown in F1g 1. Let
us note that the anisotropy coefficient A =5 — s, — 0.5s,,
is negative (~14.26) for Tm, ,Se and positive (+14.65) for
Cu. It was found that the ratio C/C, increases slightly with
increasing thickness parameter. The growth of C/C, is most
noticeable during the angular surroundings of y = 57/16 and
x =11n/16.

Received higher connection of parameters ¢, 7 reflects the
effect of occurrence of longitudinal strain of tubes in their
torsion, Poynting’s effect. The effect, experimentally observed
originally by Poynting, was nonlinear [16]. Here, the
connection of ¢ with 7 is linear due to the linearity of Hooke’s
law. The dimensionless proportionality coefficient I' = &/(zr,)
depends on the relative thickness of the walls of the tubes
(p—1), dimensionless combinations of three compliance
coefficients s, s,,, s,, and chiral angle y. The dependence of
the effect on chiral angle is odd, and in particular, disappears
when y = 0, and when x = 77/2. It can be seen from the above
formulas and Fig. 2. The oscillating character of linear
Poynting’s effect can also be seen from this figure.

It should be noted that the differences exist between the
nano/microtubes obtained by rolling the crystal planes (001)
and (011). Comparisons are given for the dimensionless
ratio of torsional stiffnesses C/C; and the dimensionless
coefficients I' for nano/microtubes obtained by rolling the
crystal planes (001) and (011) of cubic crystals Tm,_,Se

(@) (b)
1.2 2 1.2
S S
S~ ]
Q \ O
14 14
1 1
Vet 16
I I
0 n/2 r P 0 n/2 n P
X X

Fig. 1. The dependences of the ratio C/C on the chiral angle y and
the thickness parameter p for the nano/microtubes from the cubic
crystal of Tm,, Se (a) and Cu (b).
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(with negative anisotropy coefficient) and Cu (with positive
anisotropy coeflicient) in Fig. 3. In this figure lines 1 and 2
correspond to the values of C/C and I' for nano/microtubes
from copper, obtained by rolling the crystal plane (001)
and (011) respectively, and lines 3 and 4 correspond to
nano/microtubes from Tm,_,Se. From Fig. 3a it is seen that
the dimensionless ratio of torsional stiffness C/C, for thin
nano/microtubes from Tm,,Se and Cu crystals, obtained
by rolling the crystal planes (001), differs only slightly from
unity. Dependence C/C, for nano/microtubes from Tm,Se
is not presented in Fig 3a since it practically coincides with
the dependence C/C, for nano/microtubes of Cu. As can be
seen from Fig. 3b the dimensionless coefficient I varies more
for thin-walled Cu nano/microtubes, obtained by rolling the
crystal planes (001) than for the tubes fabricated by rolling
the crystal planes (011). In the case of thin-walled Tm_,Se
tubes the reverse situation occurs. The analysis carried out
for nano/microtubes from other cubic crystals, presented in
Table 11 [12], shows similar behavior of coefficient T for the
tubes fabricated by rolling the crystal planes (001) and (011),
depending on the sign of the anisotropy coefficient.

4., Conclusion

Torsional stiffness of chiral nano/microtubes fabricated by
rolling the crystal planes (011) of cubic crystalsis proportional
to the difference between the fourth power of the external
and internal radii at zero chiral angle. Torsional stiffness,
made dimensionless by dividing on the torsional stiffness
at zero chirality depends on the dimensionless ratio of the
external and internal radii, dimensionless combinations of
elastic compliances and chiral angle. Numerical analysis
of this dimensionless ratio showed that in most cases the

Fig. 2. The dependences of ' on the chiral angle y and the thickness
parameter p for the nano/microtubes from the cubic crystal of
Tm, ,Se (a) and Cu (b).

0,25+

000

-0,25+

0,9 + + + -0,50

2
%, rad %, rad

Fig. 3. The dependences of C/C, (a) and I' (b) on the chiral angle
x for the thin nano/microtubes from the cubic crystal of Tm,,Se
and Cu. The lines 1 and 2 correspond to the values of C/C, and I to
nano/microtubes from copper, obtained by rolling the crystal plane
(001) and (011) respectively, and lines 3 and 4 correspond to nano/

microtubes from Tm,, Se.

dimensionless ratio of torsional stiffness slightly increases
with increasing the thickness parameter of tubes at a fixed
chiral angle. This ratio can increase substantially at a chiral
angle close to 57/16 or 11m/16. Torsion of chiral nano/
microtubes of cubic crystals is accompanied by changes
in their length, even in the absence of tensile forces. Such
Poynting’s effect disappears in special cases of chiral angles
equal to 0 and n/2. Nano/microtubes lengthening or
shortening under torsion can occur at different values of the
chiral angle.

It is shown that the variability of torsional stiffness for
nano/microtubes obtained by rolling the crystal planes
(011), is much higher than for nano/microtubes produced
by rolling the crystal planes (001). In the case thin-walled
nano/microtubes from cubic crystals with a positive
anisotropy coefficient, torsion in the case (001) planes can be
accompanied by a stronger elongation/shortening than for
the nano/microtubes in the case of planes (011). The opposite
situation occurs for nano/microtubes from cubic crystals
with a negative coefficient of anisotropy.
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