Effect of the hatching strategies on mechanical properties and microstructure of SEBM manufactured Ti-6Al-4V specimens

(Supplementary material)

Popov Jr. Vladimir V.^{†1}, Alexander Katz-Demyanetz1, Kovalevsky Aleksey¹, Biletskiy Roman¹, Strokin Evgeny¹, Garkun Andrey¹, Bamberger Menachem² [†] vvp@technion.ac.il

¹ Israel Institute of Metals, Technion R&D Foundation, Technion City, Haifa 3200003, Israel ² Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Technion City, Haifa 3200003, Israel

Fig. S1. Ti-6Al-4V SEBM manufactured samples from set No2 (gap 5 mm). Backscattered electron images of the microstructure with: HD=100 μ m (a); HD=200 μ m (b); HD=300 μ m (c); HD=400 μ m (d). SEM-images of defects propagation: HD=100 μ m (e); HD=200 μ m (f); HD=300 μ m (g); HD=400 μ m (h).

Table S1. Tensile properties of the samples printed at various distances through increase of hatching distance

Distance between printing	HD, μm	Tensile strength, MPa	Yield strength	Cross- sectional area	Elongation at fracture,
10	100	1034 0+4 4	967 0+0 0	42 3+6 5	⁷⁰ 18 3+0 7
	200	1034.0 ± 4.4 1022.0 ± 8.5	958 5+4 9	0.0+0.0	2 3+0 4
	300	455.3±9.1	424.7±11.1	0.0±0.0	0.0±0.0
	400	187.0±38.2	173.0±28.3	0.0±0.0	0.0±0.0
5	100	1033.7±2.9	962.7±5.5	43.4±6.2	18.7±0.5
	200	1008.3±5.7	957.3±5.5	0.0±0.0	3.4±0.5
	300	411.7±25.1	398.0±23.1	0.0±0.0	0.0±0.0
	400	206.0±2.8	184.5±0.7	0.0±0.0	0.0 ± 0.0
2	100	1043.7±8.4	983.0±8.2	42.4±0.6	17.7±0.2
	200	1007.7±4.9	930.7±6.7	41.7±6.3	18.8 ± 0.5
	300	884.0±6.6	830.7±8.6	0.0±0.0	0.8 ± 0.1
	400	454.5±57.3	435.5±30.4	0.0±0.0	0.0±0.0

Table S2. Tensile properties of the samples printed at various distances through decrease of hatching distance

Distance between printing during, mm	HD, μm	Tensile strength, MPa	Yield strength MPa	Cross-sectional area reduction, %	Elongation at fracture, %
10	100	1146.0 ± 5.7	1079.0±7.1	8.0±0.0	5.5±1.6
	80	1083.5±9.2	1159.5±4.9	11.0±0.0	7.6±0.3
	50	994.0±52.3	996.5±51.6	0.0±0.0	0.0 ± 0.0

Fig. S2. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set N \ge 1: gap 10 mm, HD 100 μ m.

Fig. S3. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No1: gap 10 mm, HD 300 μ m.

Fig. S4. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No2: gap 5 mm, HD 100 μ m.

Fig. S5. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No2: gap 5 mm, HD 200 μ m.

Fig. S6. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No2: gap 5 mm, HD 300 μ m.

Fig. S7. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No3: gap 2 mm, HD 100 μ m.

Fig. S8. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No3: gap 2 mm, HD 200 μ m.

Fig. S9. SEM-images on the fractured surface: with low (x 100, a); and high (x 1500, b) magnification. Set No3: gap 2 mm, HD 300 μ m.