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In this review, we consider wedge disclinations as the main structural defects in 2D graphene crystal hexagonal lattice. 
Disclinations are associated with improper carbon rings, i.e. rings having 4, 5, 7 or 8 members to the contrary of proper 
6‑member carbon rings constituting ideal 2D graphene crystal lattice. With the help of disclinations, we build the models for 
grain boundaries (GBs) and other interfaces in graphene polycrystals as well as for pseudo-graphenes (PGs). The pseudo-
graphenes are treated as graphene crystals with high density of periodically distributed disclinations with zero total charge. 
The geometry and energy of disclinated graphene configurations are analyzed with the help of molecular dynamics (MD) 
simulation technique and in the framework of the theory of defects in elastic continuum. We demonstrate that the energy of 
the modeled graphene interfaces reaches the value of 2 eV / Å. For symmetric tilt grain boundaries in graphene the energy 
stays below 0.5 eV / Å when the boundaries are in so-called equilibrium state. In the case of transition of a grain boundary to 
non-equilibrium state, the energy of the boundary can be up to three times higher. For investigated pseudo-graphenes, there 
is substantial energy excess in comparison to conventional graphene; the found energy excess can be of the order of 1 eV per 
carbon atom. In conclusion, it is argued that studying the properties of disclinations in graphene opens a new direction in 
graphene science and technology — graphene defect engineering.

Keywords: graphene, disclination, proper and improper carbon ring, grain boundary, disclination quadrupole, molecular dynamics, 
pseudo-graphene, disclination network.

1. Theoretical description and 
observation of defects in graphene

1.1. Pristine graphene and its properties

Graphene is one of the most interesting and groundbreaking 
discoveries of XXI century [1]. It opened the era of two-
dimensional (2D) crystalline objects, which now include 
graphene, monolayer MoS2 [2], hexagonal boron nitride [3], 
phosphorene [4], etc. Graphene exhibits properties of a 
semimetal where electron transport is essentially governed 
by Dirac (relativistic) equation [5]. Because of this graphene 
demonstrates ambipolar field effect [1] and the quantum 
Hall effect at room temperature [6,7]. The mechanical [8,9] 
and electronic [6,7,10 – 12] properties of graphene crystals 
are outstanding. This can be explored for the invention of 
new type electronic and optoelectronic devices [13 – 17]. 
In the process of graphene fabrication and treatment, it is 
practically impossible to avoid the appearance of structural 
defects. It is commonly known that in conventional 
3D  crystals the following types of defects can be 
distinguished [18]: 0D defects — point defects, e.g. vacancies 
and impurity atoms, 1D defects  — linear chains of point 
defects, dislocations and disclinations; 2D defects — various 
interfaces including grain boundaries, twin boundaries, 
stacking faults, and cracks; 3D defects  — voids and 

inclusions. In 2D crystals, we can find similar defects having 
one unit lower dimensionality. This review is devoted to the 
analysis of the properties of disclinations in graphene with 
special attention to their ensembles.

1.2. Evidence of defects in graphene

Vacancies, divacancies and impurity atoms. Single vacancy 
is a structural defect, which is formed by removal of atom 
in otherwise perfectly ordered crystal. As we know, pristine 
graphene has hexagonal lattice formed of 6‑member carbon 
rings with sp2 hybridization of electrons in covalent bonds 
[1]. We define such atomic arrangement as the configuration 
consisting of proper carbon rings. Then improper carbon 
rings will be the rings with wrong number of carbon atoms 
in a single ring. In graphene, vacancy, which results from one 
carbon atom removal in pristine lattice, evolves to a relaxed 
configuration consisting of neighboring 5- and 9‑member 
carbon rings (see Fig.  1), that was confirmed in the direct 
in situ experiments [19]. We will describe the atomic 
configuration peculiar to a defect giving the nomenclature for 
the constituting defect improper rings. For example, vacancy 
in graphene will be designated as the configuration 5-9.

Defects in graphene can be examined exploring 
electron microscopy methods. Here we provide and discuss 
schematics of atomic configurations for graphene with 
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defects based on experimental data available in the literature. 
Divacancy defect in graphene can lead to 555-777, 5555-7777 
or 5‑8‑5 configurations of improper rings, as it is shown in 
Fig.  2. In graphene, one can also experimentally observe 
multivacancies, i.e. complexes of vacancies [20]. Vacancies 
and their complexes serve as the centers of attraction of the 
impurity atoms and migration paths for carbon atoms [20,21].

Foreign atoms or molecular groups can be attached to 
graphene sheets leading to the functionalization of graphene 
[21]. In our review, we focus on structural defects consisting 
only of 2D and flat arrays of carbon atoms. In the case of 
interstitials, carbon atoms can be incorporated in graphene 
lattice in two ways, see Fig. 3. The pair of interstitial atoms 
may form so-called inverse Stone-Wales defect, see Fig. 3c.

Disclinations and dislocations. Isolated improper carbon 
rings in graphene can be viewed as wedge disclinations 
[23 – 25]. In Section 2, we consider disclination approach 
to graphene in details. Here we only mention that, for 
example, isolated 5‑member improper carbon ring indicates 
the presence of positive wedge disclination of strength 
(charge) ω = +π / 3 (Fig. 4a) and isolated 7‑member improper 
ring gives rise to negative wedge disclination with strength 
(charge) ω = −π / 3 (Fig. 4b) [23]. It is possible to construct 
dipoles of disclinations consisting of positive and negative 
counterparts, e.g. 5-7 configurations (Fig. 4c). Such dipoles 
are equivalent to edge dislocations in otherwise ideal 
graphene lattice. It is important to note the presence of 
distorted proper carbon rings surrounding disclinations; 
this is the indication of elastic fields of defects in graphene.

It can be seen from the above that improper carbon rings 
and their groups constitute various defects in graphene: 
disclinations, dislocations, and point defects. For example, 
5‑8‑5 configuration is made of three disclinations: two positive 
disclinations with ω = +π / 3 and one negative disclination 

with ω = −2π / 3; at the same time, 5‑8‑5 configuration is a 
dislocation dipole or divacancy. The Stone-Wales defect, 
which formed by rotating a chain of two neighboring carbon 
atoms by 90° [26], is the 5‑77‑5 improper ring configuration 
(Fig. 5).

Interfaces. Interfaces in pristine graphene exist in the form 
of chains of improper carbon rings as it is shown in Fig. 6 
[27 – 29]. We subdivide graphene interfaces into two classes: 
nonmisorientation interfaces (NMIs) [28] (Fig.  6a) and 
grain boundaries (GBs) [27,29]. In their turn, GBs can be 
symmetric and nonsymmetric ones. Symmetric GBs lies 
along a straight line (Fig.  6b). Nonsymmetric GBs possess 
wavy shape [27] (Fig.  6c). In the case of symmetric GBs 
or NMIs, one must obey special conditions for graphene 
growth and carefully select the substrate. Authors of Ref. 
[28] describe NMI consisting of 5‑8‑5 improper rings 
chain (Fig. 6a). The contact of two graphene sheets, which 
are grown from two crystallization centers, leads to the 
symmetric GB shown in Fig. 6b.

a                                                                         b                                                                         c
Fig. 2. Atomic configurations associated with divacancies in graphene. Configurations made of improper carbon rings: 5‑8‑5 (a), 555-777 (b), 
5555-7777 (c). Schematics according to experimental data from Ref. [22].

a                                                       b
Fig. 1. Representation of a single vacancy in graphene in the form of 
atomic configuration made of 5- and 9‑member improper carbon 
rings: ideal graphene lattice with removed single carbon atom (a); 
vacancy after reconnection of broken atomic bonds and relaxation 
(b). Schematics according to experimental data from Ref. [19].

a                                                                         b                                                                         c
Fig. 3. Possible variants of the incorporation of extra carbon atoms in graphene lattice: bridge configuration (a); central configuration (b);  
the inverse Stone-Wales defect, i.e. 7‑55‑7 carbon ring configuration (c). Schematics in (c) according to experimental data from Ref. [22].
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Graphene lattice rearrangements also take place at the 
edges of graphene sheets [30,31]. In this case, 5‑member and 
7‑member improper carbon rings appear, thus constituting 
another type of 1D defect in 2D graphene lattice, i.e. graphene 
free edge.

Nucleation of defects during graphene processing. Defects 
in graphene crystals can be caused both by imperfections 
of the substrate, on which graphene is deposited, and by 
nonequilibrium conditions of the growth process [28,32]. 
Growth of graphene at high temperatures allows defect 
annealing [33]. On the other hand, at low-temperature 
growth, defect formation becomes a serious problem [32,34]. 
The bombardment of graphene by electrons or ions initiates 
point defect formation. This process eventually leads to the 
formation of pores of a certain diameter in the graphene 
sheets [35].

1.3. Approaches to modeling graphene with defects

MD simulations. Molecular dynamics (MD) is computer 
simulation method for investigating the evolution of atomic 
and molecular structure in time and space. Molecular 
dynamics solves the system of equations of motion. These 
equations of motion are essentially Newton’s second law. 

The implementation of this method requires the definition 
of potential function  — interatomic potential. A simplest 
example of interatomic potential is Lennard-Jones potential, 
also termed as the «6-12 potential». There is a large amount 
of potentials used for various materials and models. To 
investigate carbon based including graphene, one usually 
utilizes AIREBO [36] or Tersoff [37] potential functions. For 
studying of a graphene in contact with other materials, one 
can apply co-called semi-empirical potentials or universal 
Lennard-Jones potential [38].

In our own implementation of MD technique to graphene 
structures, we used AIREBO potential. We also imposed 

a                                                                                  b                                                                                  c
Fig. 4. Disclinations and dislocation in graphene. Disclinations of strength ω = +π / 3 (a); disclinations of strength ω = −π / 3 (b); single edge 
dislocation, i.e. 5 – 7 carbon ring configuration (c). Schematics in (c) according to experimental data from Ref. [22].

a                                                                                b                                                                                  c
Fig. 6. Examples of interfaces in graphene: no misorientation interface — chain of 5‑8‑5 carbon rings (a), symmetric (b) and nonsymmetric 
(c) grain boundaries. Schematics in (а) and (c) according to experimental data from Refs. [28] and [27], respectively.

Fig. 5. Stone-Wales defect, i.e. 5‑77‑5 carbon ring configuration. 
Schematics according to experimental data from Ref. [19].
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a restriction on the exit of the carbon atoms to the third 
dimension, i.e. we considered essentially flat 2D systems. 
The MD simulation was performed at 0 K with the periodic 
boundary conditions.

DFT simulations. Density functional theory [39] is a 
computer quantum mechanical method to investigate the 
electronic structure of materials. The properties of a system 
can be determined by using functionals of the electron 
density. For graphene study, one usually uses the generalized 
gradient approximation functional of Perdew, Burke and 
Ernzerhof (GGA PBE) [40].

Elastic theory analysis. Theory of elasticity helps 
when analyzing graphene structures within continuum 
approximation [41]. Exploring elasticity approach one 
derives analytical formulas for energies of disclinations 
and their ensembles in graphene. An important starting 
point in continuum mechanics modeling is the choice of 
nomenclature and geometrical scheme for defects under 
consideration. Then, the equations of 2D isotropic elasticity 
are used to find elastic fields and energies of disclination 
ensembles in graphene [41,42].

2. Isolated defects in 2D crystals

2.1. Disclinations in 2D hexagonal crystals

The procedure of the creation of an isolated improper carbon 
ring in a finite size graphene sheet is given schematically in 
Fig. 7.

This procedure, which also known for 3D solids as 
Volterra process, see, e.g. [42], for wedge disclination 
formation, operates with the removal / insertion of the wedge 
of material after cutting along a line (plane in case of 3D) of 
the sheet [23]. As a result, single wedge disclination localized 
in the position of improper carbon ring elastically distorts the 
overall graphene sheet and change the external shape of the 
sheet and its symmetry. The presence of the positive wedge 
disclination of strength (charge) ω = +π / 3 (Fig. 7a) leads to 
5‑fold symmetry, whereas the presence of negative wedge 
disclination of strength (charge) ω = −π / 3 (Fig.  7b)  — to 
7‑fold symmetry.

Basing on such an equivalence between improper carbon 
rings in graphene and disclinations we can apply elasticity of 
disclinations for analyzing properties of defects in graphene 
including their self and interaction energies. In particular, 
simple expression for the energy E of the wedge disclination 
in the center of elastically isotropic disk [42,43] is of great 
importance:

2 2(1 ) ,
16

G vE Rω
π
+

= 	 (1)

where ω is the strength of the disclination, G is the shear 
modulus in units [Force / Length], v is Poisson ratio, R is the 
radius of the disk. From Eq. (1) it follows that the energy of 
an isolated disclination in graphene sheet scales quadratically 
with its size leading to enormous large values and making 
impossible the existence of such defects in real physical 
objects.

Disclinations in solids are realized in the form of 
self-screening ensembles, i.e. dipoles and quadrupoles 
[42,43]. As it will be shown below in Sections 3 and 4, in 
graphene, self-screening ensembles of disclinations form 
dipole and quadrupole chains contributing to the structure 
and properties of grain and intercrystallite boundaries, or 
periodic distributions giving rise to pseudo-graphenes.

To find the energies of disclination ensembles in graphene 
in the framework of the analytical approach one can use the 
results of Refs. [41,44] for energy EN of N disclinations in an 
elastic disk. In Fig. 8, the geometrical scheme for calculation 
of energy EN is shown. In such a geometry EN is expressed by 
the following formula:

+ω                                                                   −ω
a                                                      b

Fig. 7. Volterra procedure for the formation of wedge disclinations 
in 2D hexagonal crystal lattice: positive disclination and associated 
5‑member ring (a) and negative disclination and associated 
7‑member ring (b). Minimal magnitude of disclination strength in 
hexagonal lattice is ω = π / 3. Positive and negative disclinations are 
denoted by black and empty triangles, respectively [23].

Fig. 8. Schematics for calculating energy of the disclination ensemble 
in an elastic disk [41].
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where ωi is a strength of the i- disclination; ri is a distance 
between center of disk and i-disclination; υij is an angle 
between radiuses of i- and j- disclinations; R is a radius of the 
disc. In Eq. (2) we take into account that the disk is infinitely 
thin, i.e. is a 2D solid.

2.2. Classification of defects in 2D elastic continuum

To date, clear and direct method for modeling defects is 
based on the concept of the eigenstrain, which was first 
proposed by Eshelby for elastic inclusions [45]. Eigenstrain 
tensor is a complete characteristic of the defect. It shows 
“how” and “where” a defect is specified in an elastic medium. 
The response of an elastic medium to a given eigenstrain 
determines uniquely the elastic fields of the defect. With the 
help of the well-developed mathematics, the elastic fields 
generated by defect can be found from its eigenstrain [46].

The foundation of eigenstrain is based on the following 
Eshelby procedure: a cut is made in an elastic body, the material 
is removed, and then subjected to change of the shape, which 
is due to stress-free strain, e.g. plastic deformation or strain 
associated with phase transformation. Forces are applied to 
this deformed volume of material in order to insert it into 
the original configuration exactly at the place of the cut, then, 
the surfaces of the cut are glued together and the forces are 
removed.

The Eshelby procedure applied to regions of different 
dimensions leads to defects of different dimensions. 
Consequently, we can introduce a classification of defects in 
an elastic medium, based on the dimension n of the region 
Ωn of eigenstrain nε*

ij or self-distortion nβ*
ij [47,48]. Note that nε*

ij 
is symmetrized nβ*

ij.
In 2D elastic media, defects can be subdivided into three 

classes.
Point defects (n = 0). The elementary point defects are 

the infinitesimal dislocation loops in both the 2D and 3D 
media [49]. In the xy-plane film, the self-distortion of the 
infinitesimal dislocation loop becomes:

0β*
ij = −bj liδ(r − r0),     i,j = x,y,	 (3)

where bj is the dislocation Burgers vector; r0 is the coordinate 
of the loop on the xy-plane, li is the segment, which is an 
analog of the area si for an infinitesimal dislocation loop in 
the 3D medium, δ(r − r0) is the two-dimensional Dirac delta 
function, given by the relation δ(r − r0) = δ(x − x0)

 δ(y − y0).
Two mutually perpendicular infinitesimal dislocation 

loops form a dilatation center with the following self-
distortion:

0β*
ii = blδ(r − r0) = ½∆sδ(r − r0),     i,j = x,y,	 (4)

where l is the initial linear size of the loop, b = ∆l is the change 
in the linear size, ∆s = (l + ∆l)2 − l2 ≈ 2l∆l.

With a formal approach, the self-distortion of a point 
defect in a 2D medium can be written:

0β*
ij = β*

ij sδ(r − r0),     i,j = x,y,	 (5)

where s is a formal dimensional factor.

One-dimensional defects (n = 1). The self-distortion of any 
one-dimensional defect located, for example, on a segment 
[y1, y2] having a coordinate x0, reads:

1β*
ij = β*

ij lδ(x − x0)H(y1 ≤ y ≤ y2),	 (6)

where β*
ij is the self-distortion of the line segment; l is a linear 

factor, H(y1 ≤ y ≤ y2) is the Heaviside function.
In 2D media, the Somigliana dislocations are one-

dimensional defects, and the Volterra dislocations and 
disclinations are degenerate one-dimensional defects [47,48]. 
Degeneration means that in a 2D crystal, complete (perfect) 
Volterra dislocations and disclinations look like point defects.

We can rewrite the self-distortion of the dislocation in the 
form typical for Volterra dislocations, i.e. via Burgers vector 
[47, 48]:

1β*
xx = −bxδ(x − x0)H(y0 ≤ y ≤ ∞) (7)

1β*
yx = −bxδ(x − x0)H(x0 ≤ x ≤ ∞).

A linear defect can be represented through point defects 
continuously distributed with some linear density along a 
line.

Two-dimensional defects (n = 2). The area of determining 
the eigenstrain or self-distortion of two-dimensional defects 
is a part of the surface. In a 2D medium, two-dimensional 
defects are similar to inclusions in a 3D medium.

In general, for a two-dimensional defect in the film, we 
can write:

2β*
ij = β*

ij δ(Sincl ).	 (8)

Here δ(Sincl) = {1,
0,

incl

incl

S
S

∈
∉

r
r .

A two-dimensional defect can be also represented 
through distribution of point defects over the surface Sincl.

It is worth noting that in a 2D continuum, defects of 
dimension lower than 2 are described by eigenstrains (self-
distortions), which contain some arbitrary dimensional 
factors, see Eqs. (5) and (6), as is the case with defects of 
dimension lower than 3 in a 3D medium.

In 2D flat elastic media, using the Green function 2Gij and 
elastic modules Cjklm the eigenstrain nε*

ij (or self-distortion nβ*
ij) 

allows to find the total displacement field of a defect [46]:
2

,
'

( ) ( ') (| ' |) ',*t n
i jklm km ij l

S
u C G dSε= − −∫r r r r 	 (9)

where the left upper index 2 in Green function indicates the 
dimension of the medium.

For the isotropic elastic medium, the Green function 2Gij 
and the elastic modules Cjklm are [46]:

2
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where –r 2 = (x − x')2 + (y − y')2, δkm is the Kronecker delta, G is 
the shear modulus, and v is the Poisson ratio.

Since in our case the elastic space is a 2D layer with free 
surfaces, which lies in the xy-plane, the stress tensor does not 
contain the components σzj . This means that we deal with 
the plane stress state and hence in both the Green function 
and Hooke law, the Young modulus E and the Poisson ratio 
v should be replaced by ratios E(1 + 2v) / (1 + v)2 and v / (1+v), 
respectively [46]. Since the shear modulus G = E / [2(1 + v)], 
the replacement procedure does not affect it. In the transition 
from the 3D case to the 2D case, the unit of measurement of 
the Young and shear moduli change from [N / m2] to [N / m].

For the first time, by using Eqs. (9) and (10a, b) and self-
distortion Eq. (3) the elastic fields of an infinitesimal prismatic 
dislocation loop was calculated [47,48]. Also, it was found 
that the elastic fields due to dilatational center in 2D medium 
precisely coincide with the fields caused by a biaxial dilatation 
line in the 3D medium when replacing v by v / (1+v)  [47,48,50].

It is clear that defects causing a plane strain in a 3D 
medium have their counterparts of smaller dimension in the 
film. Straight-line edge dislocations and wedge disclinations 
in 3D media generate plane strain states, see, for example, 
[42,51]. Therefore, the main difference between the stress 
fields of these defects in a film and in an infinite 3D medium 
is the absence of the σzz component. The other stress 
components of dislocations and disclinations coincide with 
the accuracy to the factors associated with Poisson ratio v.

Earlier, in Refs. [52, 53], the solutions of the boundary-
value problems for edge dislocations and wedge disclinations 
perpendicular to the free surfaces of a plate having a finite 
thickness were presented. In particular, it was shown in Ref. 
[52] that when the plate thickness tends to zero, the elastic 
field generated by the edge dislocation becomes as that in 
the plane stress state. In this regard, the fields of the edge 
dislocations and wedge disclination in the 3D medium can 
be transform to those of their counterparts in the 2D crystal 
by the change in elastic moduli as noted above.

As can be seen from Figs.  6a – c and will be explained 
below, the disclination dipole is a characteristic element of 
grain boundaries in graphene. Using the rows of disclination 
dipoles with their elastic fields it is possible to calculate the 

strain energy of GBs in graphene without exploiting the 
computer simulation.

3. Modeling of interfaces in graphene

3.1. Structure of NMIs and GBs

The first step in the MD analysis of interfaces in graphene 
is the creation of starting atomic configurations. Interfaces 
can be constructed in the form of chains of disclination 
structural units (DSUs)  — specific disclination dipoles or 
quadrupoles (Fig. 9) [23,54].

The application of periodic boundary conditions in MD 
simulation for a single GB with misorientaion is problematic. 
To solve this, one can simulate atomic configurations that 
contain two GBs with opposite misorientation. The condition 
of absence of influence of geometry and size of system on 
energy of the modelled interface must be satisfied; this means 
that interfaces in the graphene sheet should not interact with 
each other. For details on eliminating the influence of the 
edge of graphene sheets on the results of MD simulation, see 
Ref. [54].

All initial graphene configurations with DSU chains 
were then equilibrated in MD simulations to the reach a 
local energy minimum of the system. The resulting atomic 
configurations for a number of graphene interfaces together 
with their misorientation angles θ and disclination content 
are shown in Fig. 10.

The comprehensive list of references devoted to the 
structure and properties of interfaces in graphene can be 
found in our recent publications [23,54,55].

3.2. Energy of grain boundaries

The results of MD calculation of energies for the mentioned 
above graphene interfaces are presented in the chart form 
in Fig. 11 and listed in Table 1 [23]. The grain boundaries 
in graphene, consisting of 5‑member and 7‑member rings, 
were studied in a number of works, e.g. Ref. [56], where the 
dependence of graphene GB energy on grain misorientation 
angle θ was reported for the first time.

Fig. 9. Disclination structural units (DSUs) of interfaces containing 8-, 7-, 5- and 4‑member improper carbon rings and the corresponding 
disclination schemes operating with DSUs; ω = π / 3.
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3.3. Equilibrium and non-equilibrium GBs in 
graphene

The structure and energy of symmetric GBs in graphene 
have been investigated in details in Ref. [55], where the 
DSU approach was adopted to model equilibrium as well as 
non-equilibrium states of GBs, for which the same average 
misorientation holds (Fig.  12), but the GB energy varies. 
Initially, the DSU approach was applied to the analysis of GB 
in metals in Refs. [57,58].

In accordance with the DSU approach, non-equilibrium 
GBs in graphene were modeled as non-uniform distributions 
of DSUs 5-7 (see Fig. 9a), which are represented at mesoscale 
as disordered networks of disclination dipoles (Fig. 13).

The obtained dependence of GB energy of equilibrium 
GBs on misorientation angle in the whole interval 0° ≤ θ ≤ 60° 
is substantially nonbell-shaped (see Fig. 13) that is associated 
with structural differences of the GBs with θ and (60° − θ) 
and agrees well with literature data on orientation-dependent 
properties of GBs in graphene [56,59]. It was demonstrated 
that the energy of non-equilibrium GB in graphene can 

substantially exceed the energy of equilibrium GB with the 
same misorientation angle (see Fig. 13) [55]. The energy of 
non-equilibrium GB is highly affected by degree of DSU 
distribution irregularity and lesser extent by GB average 
misorientation angle.

Fig. 10. Interfaces if graphene constructed with the help of DSUs shown in Fig. 9 and corresponding disclination stricture schemes; note that 
configurations with θ = 60° gives zero misorientation between neighboring graphene parts, each of each is however rotated by ± 30° with 
respect to original graphene orientation.

Table 1. Energies of interfaces in graphene.

Type of  
interface

Misorientation  
angle

Simulated energy  
per unit length, eV / Å

5-7 21.8° 0.439
5-8-5A1 0° 0.886
5-8-5A2 60° 2.253
5-8-5B 13.7° 1.408
5-8-5C 0° 1.292
5-8-5D 60° 0.639

4-8 0° 1.051
7-4-7 A1 0° 1.247
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Fig. 11. Energies, misorientation and atomic structure of interfaces in graphene.

Fig. 12. Examples of equilibrium and non-equilibrium symmetric grain boundaries in graphene [55].
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3.4. Influence of GBs on graphene properties

It was reported in Ref. [50] that symmetrical GBs composed 
of DSUs 5-7 create jumps of temperature at the interface 
that was attributed to the fact that thermal conductivity 
of GBs is different from those for defect-free graphene. 
The symmetrical NMIs composed of DSUs 5‑8‑5D can 
be considered as a «metallic wires» and may be used as a 
molecular membrane for selective diffusion of atoms or 
small molecules [28].

The dependence of mechanical properties on 
misorientation angle of GBs was theoretically investigated 
in Ref. [24], where anomalous strength behavior of graphene 
with tilt GBs was reported: with decreasing the misorientation 
angle from 30° to 5°, the fracture strength and fracture strain 
of graphene sheets with GBs were decreasing. The structure 
of graphene sheet edges influence the electronic [61, 62] and 
mechanical [63] properties of graphene sheet as a whole.

4. Pseudo-graphenes

4.1. Structure of pseudo-graphenes

The interfaces and GBs discussed Section 3 can be used 
as a structural element to create graphene-like materials 
with periodically distributed improper carbon rings, i.e. 
disclination defects (Fig. 14).

Graphene crystals with the densest distributions of 
disclinations having in their cores improper 4-, 5-, 7-, 
8‑member carbon rings contain a minimal number of 
proper 6‑member carbon rings. These carbon crystals can 
be classified as pseudo-graphenes (PGs) (Fig. 15) [64]. Note 
that one of the first pseudo-graphenes, namely phagraphene 
(configuration 5-7 A in Fig. 15) was introduced in Ref. [65].

4.2. Energy of pseudo-graphenes

The densest distributions of disclinations in graphene lattice 
guarantee a minimal total energy of the structure; Ref. [64] 
describes this fact in detail. When close packed, disclinations 
of opposite sign screen elastic fields of each other forming 
disclination network (DN), thus reducing the stored elastic 
energy in graphene crystal. For example, graphene crystals 
with various density of uniformly distributed 4‑member and 
8‑member improper carbon rings are presented in Fig. 16. 
The dependence of energy on density of defects is then given 
in Fig.  17. Crystal marked “4-8 g0” is PG “4-8” (Fig.  15). 
It follows from the diagram that, with the exception of the 
tightly packed structure “4-8 g0”, the average energy per 
atom in the crystal depends weakly on the period of the DN.

On the other hand, if we consider PGs with varying 
density of DSUs, i.e. disclination quadrupoles (Fig.  18), we 
get another tendency; namely, the reduction in the density 
of DSUs (disclination quadrupoles) in material lowers its 
energy (Fig. 19).

Energies per carbon atom for PGs shown in Fig. 15 are 
summarized in the diagram in Fig. 20.

4.3. Disclination approach to pseudo-graphenes

The energy associated with the ensemble of improper carbon 
rings in PGs can be found with the analytical formulas 
of disclination approach, i.e. by exploring Eq.  (2) for 
corresponding PG disclination configuration. To do this, the 
self-screened disclination ensemble should be defined for 
each pseudo-graphene.

The disclination ensemble becomes self-screened 
when its energy does not depend on the external screening 
parameter R. This is true for zero total disclination charge 

Fig. 13. Dependence of grain boundary (GB) energy on misorientation angle θ in graphene for equilibrium (filled blue circles) and non-
equilibrium (green triangles) GBs [55]. Dashed line and empty red circles correspond to results from Refs. [56] and [59], respectively.
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and zero disclination dipole moment of the ensemble of 
N disclinations. The simplest self-screening disclination 
ensembles are quadrupoles in the forms of a rectangle or line. 
Their energies are known, e.g. see Refs. [42, 43]. Additional 
analysis of Eq. (2) shows that the most general self-screening 
ensembles, i.e. those with the energies that does not depend 

on the external parameter R, are quadrupoles in the form 
of parallelograms and its particular cases (Fig.  21). These 
quadrupoles can be recognized in graphene structures as 
repetitive self-screening ensembles, and hence their energies 
should be used to calculate the energy of disclination 
networks EDN as a whole.

Fig. 14. Assembling of the phagraphene from GBs with DSUs 5-7.

Fig. 15. Pseudo-graphene crystals (PGCs).
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Fig. 16. Networks of improper 4‑member and 8‑member carbon rings in graphene as periodic structures of disclinations of strength ω = +2π / 3 
and −2π / 3.

Fig. 17. Energy per carbon atom for graphene crystals with periodically distributed disclinations given in Fig. 16.
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Fig. 18. Periodic networks of disclination quadrupoles in pseudo-graphenes.

Fig. 19. Energy per atom for pseudo-graphenes with periodic ensembles of disclination quadrupoles given in Fig. 18.
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The energies of quadrupoles, shown in Fig. 21, have the 
following algebraic representations [64]:
(a) for the parallelogram (Fig. 21a)
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(c) for the rhombus (Fig. 21c)
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(d) for the square (Fig. 21d)
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(e) for the line quadrupole (Fig. 21e)
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Fig. 20. Energy per carbon atom for pseudo-graphene crystals, given in Fig. 15.

a                                                                               b                                                                          c

d                                                                              e                                                                                                 f
Fig. 21. Self-screened disclination quadrupoles. Parallelogram (a), special cases of parallelogram: a rectangle (b), a rhombus (c), a quadrate (d), 
and line quadrupoles (e, f) as degenerate parallelograms [43].
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(f) for the line quadrupole (Fig. 21f)
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For each crystal with a periodic DN, a suitable disclination 
quadrupole can be determined for calculating DN energy per 
unit area eDN. For example, for phagraphene (Fig. 15a) this is 
the disclination quadrupole in the form of the parallelogram 
(Fig. 21a), for structure “5-7 B” (Fig. 15b) this is the rhombus 
(Fig. 21c), for structure “5‑8‑5 D” (Fig. 15d) this is the line 
quadrupole (Fig. 21f), and for structure “4-8” (Fig. 16а) this 
is the square (Fig. 21d).

In Fig. 22, the average energy per unit area for graphene-
like structures from Fig. 16, is plotted as function of the square 
of the DN period. The energies are normalized to the energy 
of a tightly packed structure “4-8 g0”. The dependences were 
found from MD simulations (Fig. 22, blue dots), calculated 
with Eq. (11d) (Fig. 22, red line), and calculated with Eq. (2) 
adopted to four quadrupoles (Fig. 22, grey line) [64]. In 
disclination scheme (right-hand part in Fig. 22), the area 
occupied by quadrupole when calculating the DN energy is 
highlighted.

The average energy of graphene-like structures with 
alternating disclination networks (DNs) remains practically 
unchanged with increasing DN period. The exceptions are the 
crystals with the densest DNs, i.e. PGs. Pseudo-graphenes are 
low-energy containing disclination defects configurations. 
The energies of PGs “5-7 A” and “5-7 B” exceed the energy of 
an ideal graphene by only 0.28 – 0.38 eV / atom.

a                                                                           b                                                                                 c
Fig. 23. Examples of exotic pseudo-graphene crystals (PGCs): graphyne (a) [66], 4-12 network (b) [67], 3-12 network (c) [68]. Shadowed 
areas in Figs. correspond to elementary cells of each pseudo-graphene, respectively.

Fig. 22. Energy per unit area for pseudo-graphenes “4-8”, as a function of the square of the DNDN period. The blue dots correspond to 
the energies calculated with the help of MD simulation; red and grey lines correspond to the dependences, calculated analytically taking 
into account 1 and 4 disclination quadrupoles, correspondingly. The energies are normalized to the energy of a tightly packed structure 
“4-8 g0” shown in Fig. 16a. In disclination scheme (right), the area related to the quadrupole used in analytical calculation of DN energy, is 
highlighted [64].
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4.4. More pseudo-graphenes

At present, none of the listed in this Section PGs have been 
experimentally observed. Still there is a lot of efforts to study 
theoretically the properties of such and other graphene-
like crystals [66 – 68]. Examples of exotic PGs are shown 
in Fig.  23. The PG “5-7” (so-called phagraphene) has the 
smallest formation energy per carbon atom, and therefore it 
has the greatest chances to exist.

4.5. Properties of pseudo-graphenes

Mechanical properties. Influence of defects on mechanical 
properties of a graphene was not clarified experimentally 
until now, but there is a number of theoretical studies 
devoted to the matter [24, 69 – 73]. In all those publications, 
decreasing of mechanical properties with increase in defect 
density is predicted.

Though nucleation of defects in graphene lattice 
reduces Young modulus and strength, it is possible to 
observe interesting effects on other mechanical behavior. 
For example, in Ref. [69] the superplasticity of a graphene 
with the distributed defects was predicted. In  Ref. [73] 
auxetic properties were described through the introduction 
of point defects in graphene lattice. The negative Poisson 
ratio was achieved for small deformations. The critical 
change in deformation behavior is shifted to higher 
deformations with increase in density of defects. In  Ref. 
[72] the dependence between graphene Young modulus and 
thermal conductivity coefficient on vacancy or Stone-Wales 
(SW) defect concentration was found. Increasing of vacancy 
concentration led to decrease of Young modulus in the linear 
manner. For SW defects, there was a deviation from linear 
dependence and lower sensitivity of Young modulus to defect 
concentration.

Electronic properties. Pseudo-graphenes demonstrate 
semi-metal [65], metal [74] or semiconductor [75] electronic 
properties. The band gap can be opened to values greater than 
3 eV, which can be attributed to wide-gap semiconductors 
[75].

Magnetic properties. Point defects can induce magnetism in 
graphene. Vacancies and impurity atoms make it possible to 
observe either ferromagnetic or antiferromagnetic behavior, 
depending on point defect combination [71]; a broken bond 
because of vacancy formation (Fig. 1b) induces the magnetic 
moment in graphene. In  Ref. [76, 77] the dependence of 
magnetic moment of point defect concentration is presented.

5. Summary and conclusions

Graphene with 1D defects, i.e. interfaces and grain 
boundaries, demonstrates conducting or superconducting 
states along these defects that can be used in nanoelectronics 
and nanoengineering applications. Pseudo-graphene 
crystals with periodic distributions of point disclinations 
exhibit metallic, semi-metallic, or semiconducting types of 
conductivity with isotropic or anisotropic properties. By 
changing the type and density of defects, one can control the 

characteristics of graphene in a wide range. Although today 
none of pseudo-graphenes has been found experimentally, 
their stability is confirmed by theoretical calculations.

There is a number of important tasks for future analysis of 
graphene and graphene-like crystals with defects:

—  detailed experimental studies of defects and their 
ensembles in 2D crystalline objects;

—  elucidation of the effect of defects on the physical 
properties of graphene and development of the corresponding 
models;

—  determination of the criteria and conditions for the 
nucleation of defects in graphene;

—  understanding the role of graphene sheet edges and 
size of graphene islands on the properties.

We expect that the fabrication of disclinated graphenes 
will become possible by improving the methods of graphene 
crystal growth, precise control of the growth parameters 
and control of the substrate morphology. This together with 
theoretical background will open a new direction in graphene 
science and technology — graphene defect engineering.
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