Combustion synthesis and consolidation B₄C-TiB₂ composites

V.A. Shcherbakov[†], A.N. Gryadunov, M.I. Alymov, N.V. Sachkova

[†]vladimir@ism.ac.ru

Institute of Structural Macrokinetics and Materials Science RAS, Academician Osipyan str., 8, 142432, Chernogolovka

The paper presents experimental results of preparation the B_4C-TiB_2 composites by combining the self-propagating high-temperature synthesis (SHS) and pressing of hot product with use of an additional heat source (chemical oven). The adiabatic temperature and composition of equilibrium combustion product were calculated with use the program of thermodynamic calculations THERMO. It was shown during exothermic reaction are formed TiB_2 as disperse phase and B_4C as ceramic binder. Adiabatic combustion temperature and quantity of liquid phase are depended from content of ceramic binder. The influence of reaction mixture composition and mass of chemical oven on the magnitude of the residual porosity had been studied. Found that minimal residual porosity (3%) is achieved at 20-40 wt. % B_4C content in end product and mass ratio of green sample and chemical oven 1:4. The influence of mixture composition on phase composition and microstructure of the ceramic composites has been studied. XRD analysis showed that during exothermic synthesis had been formed TiB_2 and B_4C . It was established B_4C content has a significant influence on microstructure formation of SHS-composites. At the B_4C content less than 20 wt. % ceramic composite was formed with homogeneous microstructure and TiB_2 grain size of ~10 microns. Increasing of the B_4C contents up to 50 wt. % reduces the size of TiB_2 particles down to 0.5 microns and results to formation of the ceramic composites with inhomogeneous microstructure. It is shown that the obtained ceramic composites possess high Vickers hardness (32.84 – 33.64 GPa).

Keywords: SHS, pressing, ceramic composite, TiB₂, B₄C.

СВС-компактирование композита В₄С-ТіВ₂

Щербаков В.А.[†], Грядунов А.Н., Алымов М.И., Сачкова Н.В.

[†]vladimir@ism.ac.ru

Институт структурной макрокинетики и проблем материаловедения РАН, ул. Академика Осипьяна, д. 8, 142432, Черноголовка

В статье представлены экспериментальные результаты по получению композитов на основе системы В С-ТіВ, методом, сочетающим самораспространяющийся высокотемпературный синтез (СВС) и прессование горячего продукта с использованием дополнительного источника тепла в виде химической печки. С использованием программы термодинамических расчетов "THERMO" рассчитаны адиабатическая температура и составы равновесных продуктов горения. Показано, что продуктами экзотермического взаимодействия являются тугоплавкие соединения TiB, и В С, которые в керамическом композите образуют дисперсную фазу и керамическую связку. Адиабатическая температура горения и агрегатное состояние конечного продукта зависит от содержания керамической связки. При содержании В С менее 20% масс конечный продукт содержит расплавленную керамическую связку. Изучено влияние состава реакционной смеси и массы химической печки на величину остаточной пористости. Установлено, что минимальная остаточная пористость (3%) достигается при содержании в композите В С 20-40 масс и соотношении массы шихтовой заготовки и химической печки 1:4. Изучено влияние состава реакционной смеси на формирование фазового состава и микроструктуры керамических композитов. Рентгенофазовый анализ показал, что продуктами экзотермического синтеза являются TiB₂ и B₄C. Установлено, что содержание B₄C оказывает существенное влияние на формирование микроструктуры СВС-композитов. При содержании В₄С менее 20% масс формируется однородный керамический композит с размером зерен TiB,10-12 мкм. Увеличение содержания B₄C до 50% масс приводит к уменьшению размера частиц ТіВ, до 0,5 мкм и формированию композита с неоднородной микроструктурой. Показано, что полученные керамические композиты обладают высокой твердостью по Виккерсу (32,84 – 33,64 ГПа).

Ключевые слова: CBC, прессование, керамический композит, TiB₂, B₄C.

1. Введение

Керамические композиты В С-ТіВ, обладают высокой твердостью, прочностью и низкой плотностью [1]. Благодаря своим свойствам их используют для изготовления легкой керамической брони, режущего инструмента для обработки закаленных сталей и твердых материалов, износостойких деталей, работающих в условиях высоких температур и агрессивных средах. Композиты В С-ТіВ, получают спеканием или горячим прессованием смеси порошков тугоплавких соединений при температуре, близкой к температуре плавления карбида бора. Электроискровое спекание под давлением позволяет в широких пределах варьировать температуру и скорость нагрева, чтобы осуществить консолидацию композита [2,3]. Однако, несмотря на хорошие физико-механические характеристики композитов, недостатком указанных методов является получения малогабаритных изделий.

Перспективным способом получения керамических композитов является CBC-компактирование [4]. Он отличается от известного в порошковой металлургии горячего прессования тем, что керамический композит нагревается за счет тепла, выделяющегося в ходе экзотермического синтеза тугоплавких соединений. Достоинствами метода являются: простота аппаратурного оформления, практическое отсутствие затрат электроэнергии и возможность получения крупногабаритных изделий из керамических композитов.

Формирование микроструктуры композита B_4C- TiB₂, полученного методом CBC под давлением, изучали в [5]. Показано, что формирование композита с однородной микроструктурой зависит от содержания B_4C , которой составляет 20% мас. Однако использование порошка графита дисперсностью 2 и 10 мкм не позволило осуществить полное превращение реагентов в конечный продукт.

При получении керамических композитов методом CBC-компактирования необходимо осуществить синтез целевого продукта заданного фазового состава с высокой пластичностью при температуре горения и его прессование до минимальной остаточной пористости. Для решения первой задачи необходимо приготовить реакционную смесь определенного химического и дисперсного состава с температурой горения близкой к адиабатической, а для решения второй задачи — выбрать оптимальный тепловой режим, обеспечивающий минимальный уровень теплопотерь [6].

В настоящей работе в качестве исходных реагентов использовали субмикронные порошки сажи и бора. Целью работы является исследование влияния массовой доли В4С на формирования микроструктуры композита и его физико-механические характеристики.

2. Методика эксперимента

Реакцию экзотермического синтеза керамических композитов проводили по схеме:

 $(1 - x)(Ti + 2B) + x(4B + C) \rightarrow (1 - x)TiB_2 + xB_4C.$ (1)

Конечный продукт рассчитывали на образование конечного продукта с различным содержанием тугоплавких соединений. Реакционные смеси для синтеза CBC-композитов готовили из порошков титана (марки ПТМ), бора (марки аморфный черный) и углерода (марки П804), а химические печки из порошков титана (марки П804), а химические печки из порошков титана (марки ПТМ), бора (марки аморфный черный). Исходные порошки предварительно сушили при температуре 100–120°С и смешивали в шаровой мельнице типа «пьяная бочка» объемом 2 литра. Составы реакционных смесей представлены в таблице 1.

Экзотермический синтез и консолидацию композита B_4C-TiB_2 осуществляли в реакционной пресс-форме, описанной в [1]. Шихтовую заготовку и химические печки прессовали диаметром 60 мм, высотой 16 мм с относительной плотностью 0,6. Для повышения эффективности компактирования шихтовую заготовку помещали в реакционную пресс-форму между слоями химической печки, которые отделяли друг от друга графитовой фольгой. Выделение тепла в химической печке осуществлялось по реакции

$$Ti + 2B \to TiB_2. \tag{2}$$

Соотношение масс шихтовой заготовки и химической печки — 1:4. Реакцию горения инициировали раскаленной электрическим током вольфрамовой спиралью

Табл. 1. Составы реакционных смесей, СВС-продукта и физико-механические характеристики. **Table 1.** Compositions of the reaction mixtures, SHS-products and the physical and mechanical characteristics.

1			· 1	1 /							
Состав Composition	Содержан Conten	ие реагент t of reactan	ов, % мас [*] . ts, %wt.	Pacчетный состан Composition of fi	я продукта, % мас. nal product, %wt.	Teopeтическая плотность, г/см ³ Theoretical density, g/cm ³					
1			,	1	1 ,						
x	Ti	В	С	TiB_2	B_4C						
0	68,9	31,1	0	100	0	4,53					
0,1	63,3	34,9	1,8	90	10	4,33					
0,2	57,5	38,9	3,6	80	20	4,13					
0,3	51,4	43,1	5,5	70	30	3,93					
0,4	45,1	47,4	7,5	60	40	3,73					
0,5	38,4	52,0	9,6	50	50	3,53					
Здесь и далее в статье содержание компонентов смеси и композита указано в массовых процентах.											

'In the article compositions of mixtures and composites are listed in weight percent.

одновременно в шихтовой заготовке и химической печке. Адиабатическая температура горения химической печки составляет 3500К. Экзотермический синтез целевого продукта осуществляли при давлении 10 МПа, а компактирование — при давлении 100 МПа. Время прессования (выдержки под давлением) — 30–60 секунд.

Микроструктуру полученных композитов изучали методом растровой электронной микроскопии с использованием автоэмиссионного сканирующего электронного микроскопа сверхвысокого разрешения Zeiss Ultra plus. Фазовый состав СВС-композитов изучали с помощью дифрактометра «ДРОН-3» с использованием монохроматического Си-К излучения, компьютерной программы "Crystallographica Search Match" и базы дифракционных данных Power Diffraction File (PDF-2, ICDD, USA, Release 2011). Для исследования микроструктуры и фазового состава готовили поверхности образцов в виде шлифа. Микротвёрдость образцов измеряли с помощью прибора ПМТ-3 в соответствии с ГОСТ 3450-76 при нагрузке 100 г и времени выдержки под нагрузкой 10 с. Для каждого образца проводилось 5 измерений. Точность измерения микротвёрдости — 5%. Предел прочности при изгибе измеряли на испытательной машине Instron 1195. Среднее значение предела прочности определяли по результатам 6 измерений с точностью 10%. Плотность керамических образцов определяли методом гидростатического взвешивания по ГОСТ 25281-82 на аналитических весах с точностью 10⁻⁴ г.

3. Экспериментальные результаты

Результаты термодинамического анализа системы (1–х)· (Ti + 2B) + х·(4B + C), полученные с помощью программы ТНЕRMО представлены в таблице 2. Видно, что равновесный продукт содержит TiB₂ и B₄C, а их массовое соотношение определяется составом реакционной смеси. С увеличением содержания в конечном продукте B₄C до 50% адиабатическая температура горения (T_{ad}) уменьшается от 3500 до 2000К. При изменении содержания B₄C от 10 до 20% T_{ad} остается постоянной, равной температуре плавления карбида бора. Максимальная доля расплавленного карбида бора в конечном продукте составляет 10%. Полученные результаты термодинамических расчетов хорошо согласуются с данными рентгенофазового анализа СВС-композитов. Из представленных на рис. 1 рентгенограмм видно, что конечный продукт, образующийся при горении смесей 1 – 5, содержит TiB₂ и B₄C. Это подтверждает формирование равновесного конечного продукта.

Эффективность компактирования СВС-продукта зависит от содержания в нем жидкой фазы. Чем больше жидкой фазы, тем выше степень пластической деформации и меньше пористость конечного продукта [6]. Как показано выше максимальная доля расплавленного карбида бора составляет 10%. Предполагалось, что при 10% В С будет получен СВС-композитов с минимальной остаточной пористостью. Однако минимальная пористость этого композита составила 6%. Увеличение содержания В С приводит к увеличению остаточной пористости СВС-композитов (табл. 2, пористость 1). Это обусловлено уменьшением температуры горения и быстрым остыванием синтезированного продукта, что сокращает время существования жидкой фазы, в течение которого полученный продукт проявляет пластичные свойства.

С целью уменьшения остаточной пористости синтез композитов осуществляли с использованием химической печки. Химическая печка позволила увеличить долю жидкой фазы и уменьшить скорость остывания полученного продукта. В результате при содержании B_4C 20 – 30% величина минимальной остаточной пористости уменьшилась до 2,5 – 3,0%. (табл. 2, пористость 2).

Рассмотрим влияние содержания керамической связки на микроструктуру композита. На рис. 2 представлены микроструктуры CBC-композитов. Видно, что композиты состоят из дисперсной фазы — TiB_2 (светлая фаза) и керамической связки — B_4C (темная фаза). При содержании B_4C 20% мас. средний размер частиц диборида титана составляет 10 мкм (см. рис. 2а). Благодаря хорошему смачиванию расплавленный карбид бора равномерно растекся по поверхности твердых частиц TiB₂. С увеличением содержания B_4C в конечном продукте до 40% средний размер зерен TiB₂ уменьшил-

	4	ad	1	1 /			1		
Состав Composition	$T_{_{\mathrm{ad}}}$	Состав конечного продукта, % мас. [*] Composition of final product, %wt. [*]			Пористость, % Porosity, %		Прочность при изгибе, МПа Flexural strength, MPa	Твердость, ГПа Hardness, GPa	
x	K	TiB ₂ (S)	$B_4C(S)$	B ₄ C(L)	(1)	(2)			
0	3500	100	0	0	14	10	_	_	
0,1	2670	90	0	10	6	3	90	_	
0,2	2670	80	20	0	12	2,5	120	37,1	
0,3	2500	70	30	0	22	3,0	140	44,8	
0,4	2300	60	40	0	32	5,2	210	39,1	
0,5	2000	50	50	0	36	7,0	-	—	
Синтез без (1) / с (2) химической печкой. Synthesis without (1) / with (2) chemical oven.									

Табл. 2. Влияние B_4C на T_{ad} , состав и физико-механические характеристики продуктов горения. **Table 2.** Effect of B_4C content on T_{ad} , composition and physical and mechanical properties of combustion products.

Рис. 1. Рентгенограммы композитов $\text{TiB}_2 - x B_4 C [x = 20 (1), 30 (2), 40 (3), 50 (4); %].$

Fig. 1. XRD patterns of the $\text{TiB}_2 - xB_4C$ composites: [x = 20 (1), 30 (2), 40 (3), 50 (4); %].

Рис. 2. Микроструктура керамических композитов TiB2-xB4C: x = 20 (a), 40% (b).

Fig. 2. SEM micrographs of the TiB2-xB4C composites: x = 20 (a), 40% (b).

ся до 1–0,5 мкм (рис. 2а), что обусловлено уменьшением температуры горения.

В последнем случае в конечном продукте формируются области, состоящие из колонии из частиц TiB₂, в которых практически отсутствует керамическая связка — В₄С. Формирование СВС-композита с неравномерным распределением связки обусловлено низкой температурой горения и отсутствием расплавленного В₄С.

В таблице 2 представлены физико-механические характеристики CBC-композитов. С увеличением содержания в конечном продукте B_4C от 20 до 40% микротвердость возрастает от 37,1 до 44,8 ГПа, а предел прочности при изгибе от 90 до 210 МПа. Дальнейшее увеличение содержания карбида бора приводит к увеличению остаточной пористости и уменьшению физико-механических характеристик CBC-композитов. Отметим, что полученные керамические композиты уступают по прочности композитам, полученным методами электроискрового спекания [1]. Это обусловлено более высокой остаточной пористостью CBC-композитов.

4. Заключение

В работе методом CBC-компактирования получены композиты, содержащие TiB_2 в качестве дисперсной фазы и B_4C — в качестве керамической связки. Показано, что для получения композитов с минимальной остаточной пористостью необходимо использовать дополнительный источник тепла в виде химической печки, обладающей высокой мощностью тепловыделения, соизмеримой со скоростью реакции экзотермического синтеза. Ее использование позволило эффективно управлять тепловым режимом и осуществить синтез керамических композитов заданного фазового состава и их компактирование. Минимальная остаточная пористость композитов составляет 3,0–3,8%, а предел прочности при изгибе 140–210 МПа, микротвердость — 37,1–44,8 ГПа.

Благодарность/Acknowledgements. Работа выполнена при поддержке Российского фонда фундаментальных исследований (Грант № 16-08-00705).

Литература/References

- Xin Yan Yue, Shu Mao Zhao, Peng Lü, Qing Chang, Hong Qiang Ru, Materials Science and Engineering A, 527, 7215 (2010).; doi:10.1016/j.msea.2010.07.101
- V. Skorokhod, V.D. Krstic, J. Mater. Sci. Lett. 19, 237 (2000).
- S.G. Huang, K. Vanmeensel, O.J.A. Malek, O. Van der Biest, J. Vleugels, Materials Science and Engineering: A, 528(3), 1302 (2011); doi:10.1016/j.msea.2010.10.022
- 4. A.G. Merzhanov, Combustion and Plasma Synthesis of High-Temperature Materials, VCH Publishers, New York, NY, 1990 (in Russian).
- M. Ziemnicka-Sylwester, Materials, 6, 1903 (2013); doi:10.3390/ma6051903
- V.A. Shcherbakov, A.N. Gryadunov, A.S. Shteinberg. Journal of Engineering Physics and Thermophysics, 63(5), 1111 (1992).