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Nonlinear vibrations in strained monoatomic carbon chains are studied with the aid of ab initio methods based on the density 
functional theory. An unexpected phenomenon of structural transformation at the atomic level above a certain value of the 
strain was revealed in cumulene chain (carbyne-β). This phenomenon is a consequence of stability loss of the old equilibrium 
atomic positions that occur at small strain, and appearance of two new stable equilibrium positions near each of them. 
The aforementioned restructuring gives rise to a softening of π-mode whose frequency tends to zero in a certain region of 
amplitudes when carbon atoms begin to vibrate near new equilibrium positions. This resembles the concept of soft mode 
whose “freezing” is postulated in the theory of phase transitions in crystals to explain the transitions of displacement type. 
The dynamical modeling of mass point chains whose particles interact via Lennard-Jones potential can approximate our ab 
initio results well enough. In particular, this study demonstrates an essential role of dipole-dipole interactions between carbon 
atoms in formation of their new equilibrium positions in the cumulene chain. We believe that computer studying of Lennard-
Jones chains enables to predict properties of various dynamical objects in carbon chains (different nonlinear normal modes 
and their bushes, discrete breathers etc.) which then can be verified by ab initio methods.
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Свойства колебательной π-моды в растянутых углеродных 
цепочках
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†gchechin@gmail.com

Южный Федеральный Университет, физический факультет, ул. Зорге 5, 344090, Ростов-на-Дону, Россия

В данной статье исследуются нелинейные атомные колебания в углеродных цепочках, подвергнутых однородно-
му растяжению, с помощью первопринципных расчётов, основанных на теории функционала плотности. В цепоч-
ках поликумулена (карбина-β) при растяжениях больше определенного значения было обнаружено неожиданное 
явление структурной перестройки таких цепочек на атомном уровне. Этот эффект является следствием потери 
устойчивости старых положений равновесия атомов, которые были найдены при малых деформациях карбина-β, 
и появления двух новых устойчивых положений равновесия вблизи каждого из них. Вышеупомянутая реструкту-
ризация приводит к смягчению π-моды, частота которой стремится к нулю в некоторой области амплитуд, когда 
атомы углерода начинают совершать колебания вблизи новых положений равновесия. Указанное смягчение напо-
минает свойства мягкой моды, "замораживание" которой постулируется в теории фазовых переходов в кристаллах 
для объяснения переходов типа смещения. Вышеописанное изменение атомной структуры цепочек поликумулена 
при соответствующем их растяжении, обнаруженном нами с помощью первопринципных расчётов, можно доста-
точно хорошо описать в рамках модели материальных точек, взаимодействие между которыми описывается  парным 
потенциалом Леннарда-Джонса. В частности, такая модель демонстрирует существенную роль индуцированных ди-
поль-дипольных сил, действующих между атомами углерода, в формировании их новых положений равновесия. 
Предполагается, что изучение цепочек Леннарда-Джонса, позволит предсказывать свойства различных динамиче-
ских объектов в карбине-α и карбине-β (нелинейных нормальных мод и их бушей, дискретных бризеров и т.д.), 
которые затем могут быть проверены с помощью первопринципных расчетов. 
Ключевые слова: углеродные цепочки, нелинейные нормальные моды, ангармонические колебания, первопринципные расче-
ты, фазовые переходы.
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1. Introduction

Monoatomic carbon chains can exist in two different 
modifications. The first one is polyyne, or carbyne-α, 
representing the chain with alternating single and triple 
bonds [chemical structure (–C≡C–)n ]. The second 
modification is comulene, or carbyne-β, representing the 
chain with double bonds [chemical structure  (=C=C=)n ]. 
Carbyne chains have be claimed to be the strongest material 
known at the present time. The synthesis of linear carbon 
chains up to 6000 atoms was reported in 2016. Because of 
a wide range of interesting properties that were studied or 
only predicted, such chains may be a potential material for 
future nanotechnology applications [1, 2].

There are a number of publications devoted to study 
mechanic and electronic properties of carbyne chains with 
the aid of ab initio methods based on the density functional 
theory (DFT). For example, let us refer to the paper [3]. DFT 
ab initio methods allow the authors of this paper to obtain 
a number of interesting results for strained carbon chains. 
They revealed that distribution of bond length and magnetic 
moments at atomic sites exhibit even-odd disparity depending 
on the number of carbon atoms in the chain and on the type 
of saturation of these atoms at both ends. It was also found 
that a local perturbation created by a small displacement of 
the single carbon atom at the center of a long chain induces 
oscillations of atomic forces and charge density, which are 
carried to long distances over the chain.

In the present paper, we study nonlinear vibrations of 
carbon atoms in cumulene described by π-mode, which is one 
of the nonlinear normal modes by Rosenberg (NNMs) [4].

2. Symmetry-determined NNMs

Nonlinear normal mode by Rosenberg represents a periodic 
vibrational regime for which all degrees of freedom xi(t), at 
any time t, are proportional to each other (in the coordinate 
space, it corresponds to a straight line). Mathematically, this 
definition can be written in the following form:

xi(t) = ai f(t)     (i = 1‥N).	 (1)
Here ai are constant coefficients, while f(t) is the same time-

dependent function for all degrees of freedom. If we know 
the explicit form of dynamical equations, the substitution 
of ansatz (1) into these equations leads to a system of (N – 1) 
nonlinear algebraic (possibly transcendental) equations 
for coefficients ai and a single differential equation for the 
function f(t). Note that the conventional linear normal modes 
represent a special case of Rosenberg’s modes. In this case,

f(t) = cos(ωt + φ0),
where ω and φ0 are frequency and initial phase, while 
coefficients { ai | i = 1..N } are particle oscillation amplitudes. 
Each NNM describes a periodic oscillation and, in contrast 
to the case of linear normal modes, the number of such 
modes has no relation with the dimension of the system. 
Unfortunately, NNMs by Rosenberg can exist only in very 
specific dynamical systems, in particular, in those, whose 
potential energy is a homogeneous function of all its 
arguments.

On the other hand, it was shown in [5, 6] that there 
can be some symmetry-related reasons for existence of 

NNMs in systems with arbitrary interparticle interactions. 
These dynamical objects we call Rosenberg’s symmetry-
related nonlinear normal modes (bellow the specification 
“symmetry-related” is omitted, because we consider only 
such type of modes). In the above papers, it was also proved 
that in the monoatomic chains (with periodic boundary 
conditions) which are described by the symmetry group DN 
there can exist only three NNMs: π-, σ- and τ-mode. The unit 
cell of the chain vibrational state is larger than that of the 
equilibrium state by 2, 3 or 4 times for π-, σ- and τ-modes, 
respectively. Thus, these modes can be excited only in the 
chains that consist of N particles, divisible by 2 for π-mode, 
by 3 for σ-mode and by 4 for τ-mode. The π-mode is the 
most short-wave mode. Any pair of adjacent particles in the 
corresponding dynamical regime oscillate in antiphase with 
the same amplitude. Thus, the vibrational state of the chain 
at any time t can be described by the following set of atomic 
displacements:

[a(t), –a(t) | a(t), –a(t) | … | a(t), –a(t)].
We rewrite this set in the brief form [a, –a], indicating 

atomic displacements only in one unit cell of the vibrational 
state (this cell contains two carbon atoms) and omitting the 
time argument t.

Similarly, for σ-mode we have the displacement pattern 
of the form [a, 0, –a] (N mod 3 = 0), while for τ-mode it can 
be written as [a, 0, –a, 0] (N mod 4 = 0). All above discussed 
NNMs represent one-parametric dynamical regimes, since 
their atomic patterns depend on the single parameter a.

The existence of only a finite number of NNMs in the 
chain was proved in [5,  6] with the aid of specific group-
theoretical methods. Vibrational states with unit cell whose 
size larger than that of π-, σ- and τ-modes represent quasi-
periodic dynamical regimes which are m-dimensional (m   >   1) 
bushes of NNMs [7, 8] (they describe quasi-periodic motion 
with m fundamental frequencies in the Fourier spectrum).

3. Amplitude-frequency characteristics of non-
linear vibrations of carbon atoms in π-mode

We investigate longitudinal atomic vibrations of uniformly 
strained carbon chains in π-mode dynamical regime. 
This strain is modeled by an artificial increase of the unit 
cell size  (R) with respect to that of the chain without any 
strain (R0 ). Thus, speaking about the strain of the chain by η 
per cent, we mean that R = R0   (1 + η).

As was already discussed, the unit cell for describing 
π-mode vibrations of the chain with periodic boundary 
conditions is twice larger than that of equilibrium state. 
Since two carbon atoms in this unit cell possess, at any 
time t, displacements x(t) and –x(t), one can discuss the 
time evolution of only one of them choosing the origin at 
its equilibrium position. To excite π-mode vibrations in the 
chain we assume x(0) = a, x(0) = 0.

An important feature of nonlinear vibrations is the 
dependence ω(a) of the frequency (ω) on the amplitude (a). 
To find this dependence, we carried out a series ab initio 
calculations based on the density functional theory [9, 10, 
11] using the software package ABINIT [12, 13]. The Born-
Oppenheimer approximation was used to separate fast 
motion of electrons and slow motion of nuclei. At each time 
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step for fixed positions of nuclei, self-consistent electron 
density distribution is calculated (by solving Kohn-Sham 
quantum-mechanical equations). Then forces acting on the 
nuclei are computed, and their new configuration is found by 
using one step of solution of classical dynamical equations. 
For this new configuration, the procedure of self-consistency 
for the electronic subsystem is repeated.

All calculations were carried out in the framework of 
the local density approximation (LDA). Pseudo-potential by 
Troullier-Martins was used to describe the field of the carbon 
atoms inner shells in the process of the Kohn-Sham equations 
solving with the aid of plane waves basis (with energy cutoff 
equal to 1360 eV). The convergence for energy is chosen as 
10–8 eV between two steps. 

For each computational run, with fixed values of the 
chain strain and the amplitude (parameter) a of π-mode, 
the frequency ω(a) was calculated. In Fig.1, we present the 
function ω(a) for chains with 5%, 7.5% and 10% strain. This 
figure demonstrates that hard type of nonlinearity appears 
at relatively small strains (increase of amplitude entails 
increasing frequency). 

However, we revealed unexpected behavior of the 
function ω(a) for 15% strain! Indeed, one can see in Fig.2 that 
this function turns out to be nonmonotonic, and softening of 
π-mode, at a certain interval of the parameter (a), takes place 
(up to point A and after point B hard type of nonlinearity 
occurs, while soft nonlinearity is observed between points A 
and B). 

Phenomenon of π-mode softening in the strained carbyne 
seems to be very interesting. Indeed, in the framework of the 
phase transitions theory, there is well-known concept of soft 
modes whose “freezing” induce transitions of displacement 
type. In this case, one usually refer to some phenomenological 
arguments about properties of electron-phonon interactions 
depending on external conditions such as temperature, 
pressure etc. In contrast, the softening of π-mode that 
we revealed appears in ab initio calculations without any 
additional assumptions of phenomenological nature.

It is essential that for the π-mode parameter a belonging 
to the interval [С, B] (Fig.2) carbon atom oscillates about a 
new equilibrium position different from the old one at x = 0. 
This effect is illustrated in Fig.3 for the chain strained by 
15% (detail discussion of these oscillations is given bellow in 
Sec.4). 

Fig. 1. Dependence of the frequency (ω) of π-mode on its amplitude 
(a) for small strains of carbyne chain.

Fig. 2. Dependence of the frequency (ω) of π-mode on its amplitude 
(a) for 15% strain of carbyne chain.

Fig. 3. Oscillations of the carbon atom for different π-mode amplitudes:  
(a) oscillations in the small potential well near the new equilibrium 
position; 					     
(b)  oscillations before the escape from the small potential well; 
(c) oscillations in the large potential well with respect to the old 
equilibrium position.

(b)

(a)

(c)
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To explain the above behavior of the function ω(a) one 
can study the potential energy U(a) as a function of the 
π-mode amplitude a for different strains of the carbon chain.

4. Energy of π-mode in strained carbon chains

We fix the configuration of carbon nuclei choosing a 
concrete value of π-mode amplitude a. Using the software 
package ABINIT, we then find potential energy U(a) of this 
configuration1. 

The energy profiles U(a) for different strains of carbon 
chains are shown in Fig.4. From this figure, one can see that 
with increase of the strain, the plots U(a) become flatter near 
the origin (a = 0) and their curvature changes sign after passing 
through zero. As a result, the old equilibrium position (a = 
0) becomes unstable, and two new minima appear at equal 
distances on both sides of the origin. These new equilibrium 
positions turn out to be stable. This specific behavior of 
potential energy of strained carbon chains help us to explain 
the properties of amplitude-frequency dependence ω(a) 
shown in Fig.2. Let us consider this question in more detail. 

Point C in Fig.5 corresponds to the old equilibrium 
position (a = 0) that now becomes unstable. For arbitrarily 
small positive values of π-mode amplitude a, carbon atom 
begins to vibrate almost from zero frequency in the right 
potential well about new equilibrium position corresponding 
to its bottom (point A in Fig.5).

1	 We excite π-mode vibrations assigning all carbon atoms the same 
displacements (±a) and zero velocities at initial time. Thus, the total 
energy E(a) of the carbyne  chain at this instant is equal to its potential 
energy U(a).

Indeed, in the absence of any small perturbations, 
carbon atom, being placed on the hilltop (point C), will be 
located at this point infinitely long time and, therefore, its 
“frequency” turns out to be zero. Since such situation is not 
possible, we must consider only small (e.g., positive) values 
of the parameter a. The corresponding period of oscillations 
should be sufficiently large, and therefore, the frequency will 
be small enough. 

As can be seen from Fig. 5, a further increase of the 
parameter a leads to the energy decrease, and our atom 
begins to move between two turning points of the right 
potential well that are indicated by symbols d and d'. In turn, 
this means decrease of the atomic vibrational amplitude and 
increase of the frequency which reaches its maximal values 
near the bottom of the well (point A).

Continue to increase the π-mode parameter (a), one can 
note, that the vibrational amplitude begins to increase, while 
the frequency decreases and runs through the same values that 
take place at the previous stage of its increasing (one obtains 
the same frequency starting from both points d and d').

As we approach the point B, the frequency (ω) again tends 
to zero. Further increase of the π -mode amplitude a leads to 
the qualitative change of vibrations: the carbon atom begin 
to oscillate in large well with respect to the old equilibrium 
position x = 0 (for example, these oscillations occur between 
points e and e'). Thus, at the exit from the right potential well, 
the function ω(a) changes abruptly from zero to a certain 
finite value.

Above discussed oscillations of the carbon atom are 
presented in Fig.3. The plots 3a and 3b show oscillations of 
this atom for a = 0.055 Å and a = 0.111 Å with respect to 
the new equilibrium position x = 0.074 Å in the small right 
potential well, while plot 3c corresponds to the oscillations 
by the old equilibrium position at x = 0 (a = 0.147 Å) in the 
large potential well.

Let us note that both potential wells, left and right, are 
not symmetric with respect to their bottoms. This is the cause 
why the plot ω(a) in Fig.2 turns out to be asymmetric relative 
to the hilltop of this function.

5. Studying of carbyne chain vibrations in 
the framework of molecular dynamics

The main idea of the molecular dynamics can be formulated 
as follows. Molecules (atoms) are replaced by mass points 
whose interactions are described with the aid of some 
phenomenological potentials. For the obtained dynamical 
system, equations of classical mechanics are solved. In the 
framework of quantum mechanics, such approach cannot 
be considered as sufficiently adequate, because it is difficult 
or impossible to find potentials which are good enough to 
take into account the influence of atomic electron shells on 
dynamical properties of the original physical system. That is 
why one has to use very complicated many-particle potentials 
which possess different forms for different geometry of the 
interacting atoms and contain phenomenological constants 
defined by huge tables (see, for example, [14]). 

However, in some cases, one can obtain reasonable results 
even with the aid of simple pair potentials, such as those by 
Morse, Lennard-Jones etc. For example, one can refer to the 

Fig. 5. Carbyne potential plot for 15% strain and π-mode oscillations 
of carbon atom with respect to new (point A) and old (point C) 
equilibrium positions.

Fig. 4. Dependence of the potential plots of carbyne chains for 
different strains.
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paper [15] devoted to study discrete breathers in 2D and 3D 
Morse crystals. Bellow, we try to explain above-discussed 
results, obtained by ab initio calculations for π-mode 
dynamics in carbyne, using the model of a chain whose 
particles interact via Lennard-Jones potential (LJ-chain).

Let us remind some well-known properties of this 
potential which can be written in the form

φ(r) = A / r12 – B / r6.	 (2)
Here the first term describes repulsion between two 

particles that are at distance r from each other, while the 
second term describes their attraction. The space dependence 
of this attraction can be explained in the framework of 
quantum mechanics as a result of the induced dipole-dipole 
interaction, while the 12-th degree of the distance r in 
repulsive term of Eq.(2) is introduced only for computational 
convenience. An important feature of the Lennard-Jones 
potential is that its both constants, A and B, can be chosen 
equal to unity (A = B = 1) without loss of generality, if we 
make an appropriate scaling of space and time variables 
in dynamical equations constructing with the aid of this 
potential.

In Fig.6, we present the dependence of π-mode energy 
on its amplitude a. The solid line corresponds to the results 
of ab initio calculations, while dot and dash-dot lines were 
obtained for the chains whose particles interact via Lennard-
Jones and Morse potential, respectively. It can be seen from 
this figure, that the energy calculated by ab initio methods for 
amplitudes a in the interval [–0.125, 0.125] is approximated 
well enough by that obtained for the LJ-chain (mean square 
deviation of these two energy graphs is equal to 0.026 eV).

We verified that dynamical properties of the π-mode 
obtained by ab initio study and by molecular dynamics for 
LJ-chain are also in a sufficiently good agreement.

Note that such a relationship between results of the 
carbyne ab initio study and that of molecular dynamics 
modeling for LJ-chains takes place not only for 15% strain, 
but for all other strains of the carbyne chains considered in 
this paper. 

The above facts seem to be very important. Indeed, 
computer experiments based on the density functional 
theory require very long time in contrast to those based on 
the methods of molecular dynamics. Therefore, one can use 
the LJ-chain modeling to predict some dynamical properties 
of the carbyne which then may be verified by ab initio 
calculations.

6. Simple interpretation of vibrational 
properties of strained carbyne chains

It is very interesting to clear up the nature of evolution 
of the carbyne properties with increasing of its strain. 
Why old equilibrium positions lose stability and new 
stable equilibrium positions appear? This problem can be 
understood with the aid of the following simple model.

Let us consider a system of three carbon atoms located at 
a distance R from each other symmetrically about the origin 
x = 0 (see Fig.7). Positions of atoms 1 and 3 are fixed, while 
the “inner” atom 2 we displace by a certain value x from its 
“old” equilibrium position at origin. We assume that atoms 
interact via Lennard-Jones potential φ(x) from Eq.(2) with 
A = B = 1.

If atom 2 gets a new equilibrium position at x ≠ 0, then 
the forces f(r) acting on it from the left and right neighbors 
must be equal:

f(R + x) = f(R – x)	 (3)
Here

f(r) = −dφ / dr = 1 / r13 – 1 / r7.	 (4)
Eq.(3) represents a nonlinear equation with respect to x 

that may have several real roots. We depict this situation 
in Fig. (8) where two intersection points of the functions 
f(R + x) and f(R – x) at x = 0 and at x = 0.130 take place. Here 
R = 1.291 (this value corresponds to 15% stretching of the 
carbyne chain).

The root x = 0 is associated with old equilibrium position 
that becomes unstable, while the root x = 0.130 is associated 
with the new equilibrium position which turns out to be 
stable.

It is also easy to verify that the curvature of the potential 
energy of the considered sistem is negative for R = 1.20 (stable 
equilibrium), while it becomes positive for R = 1.25 (unstable 
equilibrium).

Certainly, one can reveal the similar behavior of the 
potential energy considering LJ-chains with a large number 
of atoms.

7. Conclusion

Let us summarize the above presented results.
We study nonlinear atomic vibrations in strained 

cumulene chains described by π-mode (it is one of three 
symmetry-determined nonlinear normal modes by 

Fig. 6. Potential plots for carbyne chain: ab initio results (solid line), Morse chain (dotted line) and Lennard-Jones chain (dash line).
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Rosenberg that can be excited in such chains under periodic 
boundary conditions).With the aid of ab initio methods based 
on the density functional theory (DFT), we have revealed the 
π-mode softening in a certain interval of its amplitudes. This 
phenomenon is well-known in the theory of structural phase 
transitions in crystals. Indeed, transitions of displacement 
type are often treated in the framework of the concept of the 
vibrational soft mode freezing. As a rule, this idea is tried 
to justify by some phenomenological arguments. Let us 
emphasize that in our ab initio simulation π-mode softening 
arose without any additional assumptions.

Analysis of the carbyne potential energy in the vicinity 
of the π-mode softening region shows that old equilibrium 
positions of the carbon atoms lose stability and two new 

stable equilibrium positions appear near each of them. Thus, 
the essential transformation of the carbyne structure at the 
atomic level takes place under the action of a certain uniform 
strain. This phenomenon of π-mode softening can be then 
explained by the fact that carbon atoms begin to oscillate in 
potential wells near the new equilibrium positions.

It was also found that chains of mass points interacting 
via Lennard-Jones potential can demonstrate, under the 
appropriate strain, properties similar to those of carbyne 
which have been revealed with the aid of DFT ab initio 
calculations. We hope that computer modeling of such 
Lennard-Jones chains enables to predict properties of various 
dynamical objects in carbon chains (different nonlinear 
normal modes and their bushes, discrete breathers etc.) 
which then can be verified by ab initio methods. Results of 
these studies will be published elsewhere.
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