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Graphene is a recently discovered material with prominent properties those zero flexural rigidity allows creation of different 
volume conformations. The preferable geometric configuration is determined by the balance of energy gain due to increase 
of the number of atoms involved in van der Waals interactions with the energy loss due to graphene bending. One can recall 
such common conformations as folds, scrolls and other secondary structures. Full atomistic modelling of long nanoribbon 
dynamics requires considerable simulation machines powers and in order to solve this problem a simple model of a molecular 
chain on the plane, which allows the description of folded and scrolled packages of graphene nanoribbons has been proposed. 
Earlier possible steady states of graphene nanoribbons have been obtained using this model and compares to full atomic 
modelling. In this paper the simulation of high-frequency nonlinear vibrations of scrolled carbon nanoribbons packages was 
performed. It was revealed that the first three low-frequency natural scroll vibrations (“twisting-untwisting” and “transverse 
compression” modes) are stable only if their energy does not exceed 0.1 eV, and the interaction of these modes starts to occur 
at higher energy. The excitation of one mode leads to the excitation of the two others.
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1. Introduction

The carbon atoms are able to create a huge variety of 
structures, including recently discovered its monatomic 
layer - graphene attracting a great attention of researchers 
[1, 2, 3, 4, 5, 6, 7]. This 2D nanomaterial exhibits high values 
of electrical and thermal conductivity, rigidity and tensile 
strength, the enormous surface area and other properties, 
providing a wide variety of its potential applications. 
Flexural rigidity of graphene allows creation of folds and 
scrolls, those stability is provided by relatively weak van der 
Waals interaction between the carbon atoms. The geometric 
configuration is determined by the balance of energy gain 
due to increase of the number of atoms involved in van der 
Waals interactions with the energy loss due to graphene 
bending [8, 9].

The possibility of the formation of graphene rolls during 
the abrasion of the graphite lubricant has been revealed in 
1960 [10]. A number of experimental methods for obtaining 
graphene nanoribbons scrolls and the study of their structure 
and properties has been developed up to date [11, 12, 13, 
14, 15, 16, 17]. Besides experimental methods properties 
of graphene nanoscrolls are widely explores by means of ab 
initio calculations [18, 19, 20], molecular dynamics [21, 22, 
23, 24, 25, 26, 27, 28, 29, 30, 31, 32], molecular mechanics 
[33] and continual models of elastic spiral shaped rod [21, 
26, 34, 35].

It has been already mentioned that the stability of the 
scroll structure is provided by weak nonvalent carbon 
atoms interactions. Due to this fact such structure types 
should possess a low frequency (gigahertz order) natural 

oscillations. The lowest frequency vibration corresponds 
to periodical twisting and untwisting of the scroll. The 
presence of this vibration type [21] provides the possibility 
of scroll application as an nanooscillator or nanoactuator in 
mechanical nanodevices. In this paper, we perform modelling 
and analysis of the low-frequency high-amplitude oscillations 
of nanoribbon scrolls, namely periodic twisting-untwisting 
mode and scroll transverse stretching-compression mode.

2. Chain model of the nanoribbon

Full-atomic models used for modelling carbon folds and 
scrolls until recently were found to be very demanding in 
computational power when considering long-term dynamics 
of large size nanoribbons configurations. Complexity of 
those models hampers the simulation results analysis. In 
order to overcome these obstacles authors of current paper 
have proposed a simple model of the planar molecular chain 
capable of describing the longitudinal and flexural motion 
of carbon nanoribbon and allowing the study of its volume 
conformations [36, 37]. Possible stationary configurations 
of nanoribbon scrolls, their energetical characteristics and 
natural vibrations frequency have been investigated by 
means of proposed model.

In this model the dynamics of the nanoribbon is reduced 
to the description of the dynamics of the molecular chain 
where every node corresponds to one layer of the cross 
section of the considered nanoribbon. A nanoribbon scroll 
configuration in this case corresponds to spiral shape of the 
molecular chain packing in 2D space - see Fig. 1.
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Graphene nanoribbon is a narrow, straight-edged stripe 
of graphene. The detailed description of the chain model 
allowing to analyse the folded and rolled packaging of long 
graphene nanoribbons can be found in [36, 37].

The following Hamiltonian can describe the chain model 
of carbon nanoribbon
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where the vector un = (xn, yn) sets the coordinates of n-th 
particle, number of nodes N establishes the nanoribbon 
length L = (N – 1)a, M = 12mp is the mass of carbon atom 
(mp  =  1.6603·10–27 kg — the proton mass). The first term 
in the sum (1) sets the kinetic energy of the chain, the 
second one determines the energy of valent interactions 
between neighbouring particles (this term describes the 
chain longitudinal rigidity, the third one defines the chain 
bending energy, and the forth one establishes the van der 
Waals interactions between the atoms of the chain. The 
distance rn = |νn |, where the vector νn = un+1 – un , the valent 
angle cosine is defined as cos(θn ) = –(νn–1 , νn )/rn–1 rn and the 
distance rn,k = |un – uk |. The potential

V(r) = K(r – a)2/2,	 (2)
is responsible for the longitudal rigidity and the potential 

U(θ) = ε[cos(θ) + 1],	 (3)
sets the chain bending rigidity. The modificated Lennard-
Jones potential 

W(r) = 4ε [(σ/f(r))12 – (σ/f(r))6],
f(r) = r0(r/r0)

α,    r0 = 21/6σ,	 (4)
describes the weak van der Waals interactions of the chain 
nodes. The parameters of interaction potentials (2), (3), (4) 
are can be found in [36, 37], the rigidity value K = 405 N/m, 
the chain step a = 0.1228 nm, energy ε = 3.50 eV, ε = 0.00834 
eV, parameters σ = 0.3212 nm, α = 0.88. 

In order to find the stationary state of the nanoribbon one 
should solve the minimum value problem
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i.e. minimization the potential energy of the chain by its nodes 
coordinates {un }

N
n=1 . Let us {un

0
 }

N
n=1 to consider as the solution 

of the minimum problem (5), then the corresponding scroll 
package will possess the energy E(un

0).
The minimum problem (5) has been solved numerically 

by means of conjugate gradient method. Specifying the initial 
chain nodes location followed by energy minimisation one 
can get different stationary packages of the nanoribbon. The 
eigenvalues of the matrix of second derivatives of 2N×2N 
dimensionality have been determined in order to verify the 
stability of the established stationary package.
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The stationary package of the chain is stable in case if all 
the eigenvalues of the symmetrical matrix B are non-negative 

λi ≥ 0, i = 1, 2, …, 2N. Three first values are always equal to 
zero λ1 = λ2 = λ3 = 0. This eigenvalues correspond to the 
movement of the chain in the plain as a rigid body 
(corresponding to shear strain by two coordinates and 
rotation). The remaining positive eigenvalues λi > 0 
correspond to the natural oscillations of the structure with 
frequencies Mii /= 3+λω , i = 1, 2, …, 2N – 3. 

When the length of the scrolled nanoribbons exceeds 
L > 13.39 spiral chain configuration has been revealed to be the 
most energetically favourable [36]. The cross-section of the 
scroll package can be described as a truncated Archimedean 
spiral - see Fig. 1 (b). The helical pitch (shortest distance 
between atoms of adjacent layers) makes h = 0.34 nm. The 
spiral (scroll) can be characterized by a number of coils Nc . A 
blank hollow always present in the centre of the spiral makes 
it similar to a circular hollow with the diameter 2R2 (where R2 
is the mean radius of the outer spiral coil) and with an inner 
radius of the hole R1 (the average radius of the inner spiral 
coil). With the increase in the scrolled nanoribbon length 
L number of coils grows proportionally to Nc  ≈  0.33L0.63 
increases as, and its radii growth can me described by the 
dependence R1  ≈  0.67L0.2, R2  ≈  0.4L0.47 (all dimensions in 
nanometers) - see Fig. 2.

Typical low frequency vibrations of the scroll are shown 
on Fig. 3 and Fig.4. The natural vibration of the scroll with the 
lowest frequency ω1 corresponds to the softest mode of the 
scrolled package oscillation in “twisting - untwisting” mode. 
The cross section of the scroll moves periodically following 
the path of Archimedes spiral shape forward and back to its 
centre (Fig. 3), and the number of coils is changed periodically 
(Fig. 5). The oscillations frequency drops monotonically as a 
reverse function of the nanoribbons length ω1 ≈ 36/L, where 
L→∞. Similar asymptotic behaviour has been obtained 
analytically by means of the continuum model of an elastic 
spiralled rod [21, 34].

Following lowest frequencies ω2, ω3 correspond to 
natural vibrations in the mode of periodical transverse spiral 
compressions - see Fig. 4.

Weak distinct of the spiral shape from a perfectly 
round hollow leads to a small difference between these 
frequencies (see. Fig. 2, curves 4 and 5). Spiral compressions 
corresponding to these frequencies occur along mutually 
orthogonal directions. Increase of the nanoribbon length 
promotes the tendency of frequencies decrease and getting 
close to zero at a slower rate ω2,3 ≈ 30/L0.65, at L→∞.

3. High amplitude natural vibrations

The analysis of the eigenvalues and corresponding matrix 
(6) eigenvectors allows us to describe only low-amplitude 
(harmonic) scroll natural oscillations. In order to make the 
analysis of high-amplitude oscillations the initiation of those 
oscillations with different initial impulse energy should be 
performed.

Let us consider a chain containing N = 400 nodes 
(nanoribbon length L = 49.00 nm). The corresponding 
stationary scroll is shown in Fig. 3 (b). Small-amplitude 
natural scroll oscillations are characterized by frequencies 
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Fig. 1. Three dimensional full-atomic model of the nanoribbon (a) and 
corresponding two dimensional chain model (b). The nanoribbon 
length Lx = 36.84 nm and width Lz = 2.55 nm (number of nodes  
N = 301, K = 6, number of atoms Nall = 2NK = 3612), number of 
coils Nc = 3.27, internal scroll radius R1 = 1.431 nm, external  
R2 = 2.184 nm

Fig. 2. Effect of the nanoribbon length L on (a) the number of coils 
of the stationary scroll Nc , (b) inner R1 and outer R2 radii of the 
scroll (curves 1 and 2), (c) the lowest natural vibration frequencies 
of the scroll ω1, ω2 and ω3. Dashed lines stand for dependencies 
Nc = 0.33L0.63, R1 = 0.67L0.2, R2 = 0.4L0.47, ω1 = 36L–1 and ω2 = 30L–0.65.

Fig. 3. Maximal twist (a), basic state (b) and maximal untwist of the 
scrolled nanoribbon with length L = 49.00 nm (number of chain 
nodes N = 400) at its natural vibration in “twisting - untwisting” 
mode . The value of oscillation energy is equal to E0 = 0.16 eV,  
the oscillation period makes T = 123.2 ps (frequency ω = 0.27 cm–1 ). 

Fig. 4. Maximal lateral compression (a), basic state (b) and maximal 
strain of the scrolled nanoribbon with length L = 49.00 nm (number 
of chain nodes N = 400) involved in its natural vibration in “strain 
- compression” mode. The value of oscillation energy E0 = 0.1 eV,  
the oscillation period T = 13.4 ps (frequency ω = 2.49 cm–1 ). 

Fig. 5. Dependence of coil number Nc on the time t in case of 
excitation of natural vibration in “twisting - untwisting” mode with 
energy E0 = 0.07 eV (a) and 0.16 eV (b). The nanoribbon length  
L = 49.00 nm (number of chain nodes N = 400).
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ωi  =  0.34, 2.45, 2.58, 6.90, 7.17, 9.13, ... cm–1. Knowing the 
corresponding eigenvectors, we can excite corresponding 
vibrations. We also can change the initial excitement energy 
by changing the eigenvector amplitude.

Numerical simulation of the nanoribbon dynamics 
revealed that oscillations corresponding to the three lowest 
natural frequencies ω1, ω2 and ω3 appeared to be soft 
anharmonic vibrations characterized by the increase of 
amplitude as the oscillation frequency decreases. One should 
mention that there exists a critical value of energy promoting 
the interaction of these modes.

The natural vibration “twisting-untwisting” mode remains 
stable upon the energy level E0 = 0.1 eV. It is accompanied by 
a slow exponential decrease of oscillations amplitude - see 
Fig. 5 (a). This oscillation mode does not interact with other 
scroll natural vibrations - see Fig. 6 (a). At higher energy 
values the oscillation becomes unstable and the oscillations 
amplitude decreases sharply - see Fig. 5 (b).

Primarily the oscillations with frequencies being the 
multiples of the fundamental frequency are emerged. Next 
turns corresponds to emerging of transverse scroll compression 
vibrations with frequencies ω2, ω3 — see Fig. 6 (b).

Thus, a weak anharmonicity of “twisting-untwisting” 
vibration mode leads to a decrease of the oscillations 
frequency (amplitude increase results in frequency change 
from initial value ω1 = 0.34 cm–1 to minimal frequency 
0.27  cm–1). The strong anharmonicity emerges the energy 
transfer to the high frequency natural vibration of the scroll 
transverse compression (frequencies ω2,3 =2.45, 2.58 cm–1).

The transverse-compression scroll oscillations also 
remains stable with energy E0 ≤ 0.1 eV, and it is accompanied 
by a very slow transfer of energy to the lowest -frequency 
“twisting-untwisting” vibration mode - see Fig. 7 (a). Higher 
energy states are characterized by a rapid energy transfer to 
the low frequency natural vibration without excitation of 
high frequency vibrations - see Fig. 7 (b).

4. Conclusions

The simulation of the natural oscillations of the scrolled 
carbon nanoribbons revealed that the first three lowest 
frequency oscillations (“twisting-untwisting“ and 
“transverse-compression” vibration modes of the scroll) 
are stable only in case if their energy does not exceed the 
value 0.1 eV. In this case, the vibrations anharmonicity 
results solely in frequency reduction. At higher energies 
the anharmonicity driven interaction of these three low-
frequency modes is emerged and excitation of one mode 
leads to initiation of the two others.
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Fig. 7. The time dependence of the frequency of the scroll kinetic 
energy distribution after excitation its natural vibration in “strain 
- compression” mode with energy E0 = 0.1 eV (a) и 0.15 eV (b). 
The length of the nanoribbon makes L = 49.00 nm (the number of 
chain nodes N = 400), the time step equal to Δt = 1.6384 ns. Straight 
lines indicate the frequencies of the low-amplitude natural scroll 
oscillations ωi = 0.34, 2.45, 2.58, 6.90, 7.17, 9.13 cm–1.

Fig. 6. The time dependence of the frequency of the scroll kinetic 
energy distribution after excitation its natural vibration in “twisting 
- untwisting” mode with energy E0 = 0.07 eV (a) и 0.16 eV (b). 
The length of the nanoribbon makes L = 49.00 nm (the number of 
chain nodes N = 400), the time step equal to Δt = 1.6384 ns. Straight 
lines indicate the frequencies of the low-amplitude natural scroll 
oscillations ωi = 0.34, 2.45, 2.58, 6.90, 7.17, 9.13 cm–1. 
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