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It has long been known that periodic discrete systems containing defects, in addition to traveling waves, allow for the existence 
of vibrational modes localized on defects. It turned out that if a periodic discrete system is nonlinear, it can support exact 
solutions in the form of spatially localized vibrational modes even in the absence of defects. Since all the nodes of the system 
are identical, only a special choice of initial conditions can distinguish the group of nodes, on which such localized mode, 
called discrete breather (DB), will be excited. Frequency of DB must lie outside the spectrum of small-amplitude traveling 
waves. Do not resonating with traveling waves and do not losing energy to their excitation, theoretically DB can maintain 
its vibrational energy forever, in the absence of thermal vibrations and other perturbations. Crystals are nonlinear discrete 
systems and discovery of DB in them was only a matter of time. Experimental studies of DB run into considerable technical 
difficulties, and the main tool of their study is by far the atomistic computer simulations. Having gained confidence in the 
existence of DB in crystals, we still poorly understand their role in solid state physics. This review covers issues specific to the 
physics of real crystals, which were not considered in the classical works on DB. In particular, it discusses the interaction of 
moving DB with crystal lattice defects, analyzes the influence of the elastic deformation of the lattice on the DB properties, 
presents recent works on the effect of nonlinear lattice excitations on the electron subsystem of the crystal, etc.

Keywords: discrete breather, crystal lattice, nonlinear dynamics

1. Introduction

Three decades ago, an important discovery was made in 
the physics of nonlinear phenomena. It was shown that the 
non-linear system of identical discrete particles periodically 
arranged in the space can support spatially localized 
vibrational modes [1-3]. The forerunners of this discovery 
can be called the works on the localization of vibrational 
energy in molecules and molecular crystals at high excitation 
levels [4,5], as well as the localization of energy in a nonlinear 
chain, considered from a continuum point of view [6]. It 
turned out that the discreteness and nonlinearity of media 
are the two main ingredients necessary for the existence 
of spatially localized modes, called discrete breathers (DB) 
or intrinsic localized modes (ILM). The dimension of the 
system and the particular form of the interaction potential 
between the particles, as a rule, affect only properties of DB, 
but not the very possibility of their existence. Pioneering 
works on DB were focused on the strict proof of their 
existence and stability and most often they were limited to 
the consideration of one-dimensional chains of particles 
interacting with the nearest neighbors by simple nonlinear 
potentials [1-3,7-12].

Mathematical discovery of DB has raised the question 
about the existence of such objects in the real world, and 
after about a decade the reports have started to appear on 
their experimental observation in nonlinear discrete systems 
of different physical nature, such as arrays of optical fibers 
[13-15], atomic wave packets [16], arrays of superconducting 
Josephson junctions [17-19], periodic nonlinear electrical 

circuits [20,21], arrays of mechanical cantilever and 
nanoelectromechanical shuttles [22-26], and others [27,28].

Attention of researchers was also attracted by crystals, 
because they also belong to discrete nonlinear systems. 
However, the microscopic size of DB in crystal lattices makes 
them very difficult for direct experimental observation. 
Nevertheless, some successful experiments have been carried 
out, confirming the existence of DB in crystals [29-38].

For specialists in solid state physics and materials science 
a new research direction has appeared. It is necessary to 
thoroughly examine the properties of DB in various crystals, 
their excitation mechanisms, the possibility of their motion 
along crystal lattice, describe how DB interact with each 
other, with the crystal lattice defects, with thermal vibrations, 
and with external fields. On the basis of this knowledge the 
role of DB in the physics and mechanics of crystals will be 
understood, and in the future DB can become a part of the 
new technologies.

In this review the latest advances in the study of DB in 
crystals will be described and open problems will be listed.

2. Examples of DB in crystals

Here we present examples of DB in a variety of defect-
free crystals, based on the results of molecular dynamics 
simulations. In the absence of thermal lattice vibrations 
such localized vibrational modes have a very long lifetime, 
measured in thousands or more oscillation periods.

Historically, the first is the result for NaI alkali halide 
crystal with an ionic type of atomic bonds [39-41]. The 
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vibrations with a large amplitude makes one Na atom in 
a high-symmetry crystallographic direction 〈001〉, 〈011〉 
or 〈111〉 with a frequency lying in the gap of the phonon 
spectrum of the crystal, so this DB is called gap DB. DB 
frequency decreases with increasing amplitude, reflecting 
a soft type of the nonlinearity of the vibrational mode. The 
gap in the phonon spectrum exists due to the significant 
difference of the masses of the crystal components (iodine 
atom is 5.5 times heavier than the sodium atom).

The following example is DB in covalent crystals Si and 
Ge, successfully excited in [42] using the Tersoff interatomic 
potential. This DB has frequency above the gapless phonon 
spectrum. DB frequency first increases and after reaching the 
maximum value decreases with increasing amplitude.

It is easy to excite gap DB in ordered alloys with a large 
difference in the atomic mass of the components, ensuring 
the existence of a wide gap in the phonon spectrum, e.g., in 
Pt3Al [43-51]. These works were based on the Morse pair 
interatomic potentials [52]. Note that in Pt3Al it is possible to 
excite both gap DB and DB with frequency above the phonon 
spectrum [49,50]. Gap DB is localized predominantly on one 
atom of aluminum and is immobile. In contrast, the DB with 
frequency above the phonon spectrum is localized on four to 
five atoms of aluminum belonging to a close-packed row and 
can move along the close-packed row. In [49], collisions of 
mobile DB with each other and with immobile gap DB were 
studied. The study of DB in the presence of point defects in 
the A3B crystal structure has been addressed by the authors 
of [51].

Japanese researchers studied the DB in graphene and 
carbon nanotubes [53-57]. To excite DB in graphene, a 
sophisticated procedure was used [53]. DB has frequency 
above the gapless phonon spectrum and is proved to be 
unsustainable. The gap in the phonon spectrum of graphene 
can be opened by homogeneous elastic deformation, allowing 
for the existence of gap DB [58]. Clusters of gap DB in 
graphene were studied in [59] where the possibility of energy 
exchange between the DB in clusters was shown. DB can also 
exist on the edge of a stretched graphene nanoribbons of the 
armchair orientation, as shown in [60,61]. DB frequency 
lies is in the gap of the phonon spectrum, resulting from the 
application of tensile strain.

DB in two-dimensional graphane crystal (fully 
hydrogenated graphene) was analyzed in [62,63]. DB is 
formed by one hydrogen atom, oscillating with a large 
amplitude perpendicular to the graphane sheet. DB frequency 
lies in the gap of the phonon spectrum and decreases with 
increasing amplitude [63]. The energy exchange between 
closely located DB and the effect of temperature on DB 
lifetime were studied in [64], where it was concluded that DB 
can participate in the process of graphane dehydrogenation 
at elevated temperatures. Review on DB in carbon and 
hydrocarbon materials was given in [65].

Beginning with the work [66], where for the first time the 
mobile DB has been successfully excited in fcc Ni and bcc Nb, 
DB have been actively studied in pure metals [67-71]. DB in 
all pure metals have the same structure. The atoms located in 
a close-packed row, oscillate in anti-phase with the nearest 
neighbors at a frequency above the phonon spectrum. The 
frequency increases with increasing amplitude of DB. 

3. Molecular dynamics studies on DB

Let us describe some specific problems in the physics of real 
crystals, which have not been well studied in the classical 
pioneering works on DB.

3.1. Lattice dimension

One important issue is whether or not the lower boundary 
of DB energy exists. It was found that for a broad class of 
Hamiltonian lattices of dimension one, two or three DB can 
have arbitrarily small energy [72,73].

In the one-dimensional crystals only two types of DB 
polarization are possible - along and across the direction of 
translation. For crystals of higher dimensionality the number 
of possible directions of vibration of the atoms in the DB 
increases. 

For DB moving in one-dimensional crystals there exists 
only one direction of motion, while in the two-dimensional 
and three-dimensional crystals the question of possible 
directions of motion of DB is an open problem.

3.2. Long-range interactions

In many theoretical works on DB only the interaction between 
neighboring particles was considered [27,28]. However, 
in crystals interatomic forces can be long-range (e.g., the 
Coulomb interaction in ionic crystals or metallic chemical 
bonds). Polynomial Fermi-Pasta-Ulam potential and Toda 
potential are not suitable to describe the long-range forces in 
real crystals, because they do not vanish at long distances. 
Realistic interatomic potentials are hard at small interatomic 
distances and become soft with increasing distance, reflecting 
the structure of atoms consisting of nuclei and electron shells.

3.3. Interaction of DB with lattice defects

According to the classical definition, DB is a spatially localized 
vibrational mode in defect-free nonlinear lattice. However, 
in condensed matter physics and materials science lattice 
defects play a crucial role. DB can interact directly with the 
defects that create distortion of the crystal lattice and local 
changes of density and bond stiffness, as well as indirectly 
through the excitation of vibrational modes localized on a 
defect, or by obtaining energy from such modes.

The first studies of the DB interaction with the vacancy 
were carried out in the framework of a one-dimensional 
Frenkel-Kontorova model with nonlinear interaction between 
particles [74,75]. It has been shown that a moving DB can 
cause vacancy migration. Moreover, a significant role in this 
process is played by a nonlinear vibrational mode, localized 
on the atom adjacent to the vacancy [75]. In frame of the 
same model the interaction of mobile DB with the interstitial 
atom has been investigated [76]. Scattering of DB on the 
interstitial atoms leads to its migration, and, in accordance 
with the experimental results, the interstitial atom is more 
mobile than the vacancy. Thus, it has been found that DB 
can increase the mobility of the point defects, which in turn 
is related to the diffusion (mass transport) and can facilitate 
dislocation climb.
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The 2D Morse crystal supports moving DB [77], which 
allows to study their interaction with defects, for example, 
with vacancy [78]. According to the obtained results it 
was concluded that DB in the 2D Morse crystal does not 
cause vacancy migration, but it lowers the energy barrier 
for migration for about 102 atomic vibrations, while the 
DB-vacancy interaction lasts [78]. DB interaction with 
vacancies, dislocations and the surface was investigated 
by molecular dynamics for bcc iron [79]. In all cases it was 
found that DB interacting with the defect excites a group of 
atoms near the defect, which may contribute to structural 
transformations in the crystal.

3.4. DB at crystal surface

Atomically flat surface of three-dimensional crystal can be 
regarded as a two-dimensional periodic system that can 
support localized nonlinear oscillations, i.e., DB. The steps 
on the vicinal surface of the three-dimensional crystal have 
a quasi-one-dimensional periodic structure, which can also 
support DB. Furthermore, DB may exist on the edge of two-
dimensional crystals, for example, on graphene nanoribbon 
edge [60,61]. Such DB can contribute to the physics of the 
surface.

3.5. Effect of elastic strain of crystal lattice on DB

Uniform elastic deformation of the crystal is able to 
significantly affect its properties by changing the symmetry 
of the crystal lattice and the interatomic interactions [80]. 
Most effectively this method to control the properties of 
crystals can be applied to nanomaterials (graphene, metallic 
nanofibers, etc. [57,80-82]) which are capable of withstanding 
considerable elastic deformation without structural 
transformation and fracture. The elastic deformation of 
graphene and graphene nanoribbons induces a gap in the 
phonon spectrum, which enables the existence of gap DB in 
these materials [58-61]. The elastic deformation of the order 
of 0.01 produces a very large effect on the phonon spectra 
and frequency of gap DB in the crystal with NaCl structure 
[83].

3.6. Moving DB and their interaction

Moving DB in a two-dimensional model of crystals with a 
local potential have been studied in [84-86]. It is known that 
DB in pure metals can move at 0.1-0.5 of the speeds of sound 
[66,68,87]. Highly localized DB in deformed graphene can 
demonstrate energy exchange [59]. Thus, DB can participate 
in energy transfer through the crystal. Colliding DB produce 
even higher spatial localization of energy [88]. Colliding DB 
can exchange by their energy and momentum [88, 89].

3.7. First-principles simulations

Molecular dynamics is based on empirical interatomic 
potentials and the obtained results should be checked with the 
use of more accurate methods such as quantum-mechanical 
density functional theory, which takes into account the 
quantum nature of the electron subsystem of the crystal. The 

study of DB in graphane crystal has clearly demonstrated 
the importance of the first-principle calculations [62,63]. 
Recently Lobzenko et al. have conducted the first-principles 
simulations of the gap DB in a uniformly deformed graphene 
[90].

4. Open problems

In order to outline the scope of possible further research, we 
list the following poorly studied questions.

1. Development of methods of DB excitation in molecular 
dynamics simulations. There are several approaches to finding 
the initial conditions that generate long-lived localized 
vibrations, for example, the rotating wave approximation, 
the method of gradient descent, the spontaneous excitation 
of chaotic DB as a result of modulation instability of certain 
vibrational modes, by quenching the thermalized lattice, by 
imposing bell-shaped functions on certain short-wavelength 
phonon modes in the nonlinear regime. The complexity 
of this problem is that the same crystal can support DB of 
various types.

2. Determination of the basic properties of DB in various 
crystals at zero temperature: their minimum and maximum 
energy, frequency range, the degree of spatial localization, 
the ability or inability to move through the crystal, elastic 
stress fields created by DB and other physical characteristics. 
Molecular dynamics can be the main tool for these studies.

3. First principles calculations of DB properties in crystals 
are very important to clarify the data obtained by the method 
of molecular dynamics.

4. Evaluation of the probability of spontaneous excitation 
of DB by thermal fluctuations. Estimation of the concentration 
and lifetime of DB in thermal equilibrium. Development of 
numerical methods for identification of DB in thermalized 
lattices in molecular dynamics calculations.

5. Since the DB are non-linear vibrational modes, their 
appearance is more probable under intensive external 
stimulation (radiation, high-gradient temperature field, 
high electric current density, plastic deformation, phase 
transitions, etc.), when the crystal receives substantial 
portions of energy. It is natural to assume that the role of 
DB significantly increases in the far from thermodynamic 
equilibrium processes. Thus, it is important to examine 
the contribution of DB to the physics of crystals far from 
equilibrium and under intense external stimulation.

6. Evaluation of the contribution of DB to the thermal 
conductivity, electric charge transfer, to the magnetic 
properties, specific heat, thermal expansion, and other 
physical properties of crystals.

7. Estimation of the role of DB in the generation of defects 
and their interaction with the crystal lattice defects.

8. Particularly important is to continue the experimental 
studies on DB in crystals. The most direct experimental 
methods analyze the spectra of different waves interacting 
with the crystals. With the increasing knowledge about the 
impact of DB on the physical properties of crystals, the new 
possibilities can be open by measuring the DB-sensitive 
properties of crystals.

Solving these problems will bring us closer to 
understanding the role of DB in solid state physics.
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