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It is shown that in some metals (Ni, Nb, Fe, Cu) may exist discrete breathers with frequencies above the top of the phonon 
spectrum. These excitations are mobile: they may propagate along the crystallographic directions transferring energy of >~ 1 eV 
over large distances. The discrete breathers with the frequencies above the top of the phonon bands may also exist in covalent 
crystals (diamond, Si and Ge). It is also found that in monatomic chains and planes (e.g. in graphene), the transverse discrete 
breathers may be excited above the spectrum of corresponding phonons. Although these vibrations are in resonance with 
longitudinal (chain) or in-plane (graphene) phonons the lifetime of them may be very long.
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1. Introduction

It is already a well known fact that in crystal lattices may 
exist long living anharmonic modes of rather high energy 
>~  1  eV. These excitations are called as discrete breathers 
(DBs), intrinsic localized modes, vibrational solitons, or 
quodons [2, 4, 7, 11, 13, 14, 16, 17, 29, 31, 32, 34, 42, 43, 46, 
47, 48, 51, 52]. In numerical studies of DBs different two-
body potential models (Morse, Lennard-Jones, Born-Mayer-
Coulomb and other potentials) have been used. All these 
potentials show strong softening at increasing vibrational 
amplitudes. Therefore the frequencies of DBs, found in these 
studies, drop down from the optical band(s) into the phonon 
gaps, if such gaps exist in the spectrum (see, e.g. Refs. [26, 
28, 30]).

However the simple pair potentials approach should not 
work for all systems. E.g. in metals the interaction of ions is 
strongly affected by conducting electrons which cause the 
screening of it at intermediate and large distances. As a result 
of the screening the odd anharmonic terms in pair potentials 
may be essentially reduced that opens a possibility to split 
DBs up from the phonon spectrum [15]. The screening is a 
cooperative phenomenon which may be taken into account 
e.g. by applying the embedded atom model (EAM). Using 
this model, it was found that in some metals (Ni, Nb [15], Fe 
[20], Cu [19]) indeed may exist the DBs with the frequencies 
above the phonon spectrum. These DBs can be both, not 
mobile and mobile.

In covalent crystals the interactions between atoms 
(ions) strongly depend on direction. It appeared that this 
dependence may lead to the reduction of the effect of the odd 
anharmonicities and to the hardening of anharmonic modes 
with increasing their amplitude. As a result in these crystals 
the DBs with the frequencies above the top of the phonon 
spectrum may exist; see e.g. Ref. [55] where this type DBs 
were found in Si and Ref. [19] where these type DBs were 
found in diamond using Tersoff-type potentials [53, 54].

In stretched atomic chains and planes (e.g. in graphene), 
due the lack of atoms in transverse direction the odd 
anarmonicities for the shifts are absent. Therefore for these 
systems there may exist localized anharmonic transverse 
modes with the frequencies above the spectrum of 
corresponding phonons [21]. Although these frequencies 
are in resonance with the longitudinal (chain) or in-plane 
(graphene) phonons, the modes can decay only due to weak 
anharmonic processes and therefore can have very long life 
time.

In this study we discuss the properties of DBs with 
the frequencies above the phonon spectrum (metals, 
semiconductors). We will show that in crystals with linear 
chains formed by nearest neighboring atoms such DBs can 
move along the crystallographic directions corresponding to 
the chains. Thereat they can transfer a large (as compared with 
a phonon quantum) amount of vibrational energy over long 
distances. We will also discuss the properties of transverse 
DBs in monatomic chains and planes (in graphene) split up 
from the top of the transverse phonoins. We will show that, 
although these modes are in resonance with longitudinal 
(chain) or in-plane (graphene) phonons the lifetime of them 
may be very long. Depending on initial conditions, the modes 
may stay or move.

2. Discrete breathers above 
the phonon spectrum

First we consider the anharmonic monatomic chain and 
discuss the vibrations of its atoms in longitudinal (x) 
directions. We suppose that the potential energy of the chain 
is given by the sum of pair potentials V(Rn,n' ), where Rn,n' is 
the distance between the atoms n and n'. The latter potentials 
can be expanded into the series of atomic displacements. 
In a linear chain with the nearest neighbor interactions 
Rn,n+1 = a + x, where a is the atom spacing (the length of the 
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bond) in the equilibrium configuration, x is the difference of 
the distance of the neighbouring atoms from its equilibrium 
value. In harmonic approximation with nearest neighbor 
interactions V = K2 x

2 /2, and the vibrational frequencies of 
the longitudinal phonons equal [38] 

2 (1 cos ) / 2ω = −k K k 	 (1)
(k is the wave number of phonons). In Ref. [31] Kosevich 
and Kovalev considered longitudinal vibrations of the chain 
taking into account the cubic and quartic anharhonic terms 
K3 x

3 /3 and K4 x
4 /4 in the pair potential. They have shown that 

in such a chain there exist a solution of vibrational dynamics 
which describes the localized modes (called later as DBs) 
with the frequencies above the top of the phonon spectrum if 

κ = 3 K2 K4 /4K3
2 > 1.	 (2)

In Ref. [15] it was shown that in this case the effective 
elastic spring of a bond in the chain equals K2 + δK2 , where 

2
2 3 42 3 / 4δ ξ= +K K K A 	 (3)

is the renormalization of the spring by the DB, A  is the 
vibrational amplitude of the bond and 2

3 2( / 2 )ξ = − K K A  
is the change of the static length of the bond. Usually K3 is 
negative and ξ  is positive, i.e. a bond expands due to its 
vibration. The renormalization of K2 is positive if the Kosevich-
Kovalev condition (2) is fulfilled. Thus, to split a DB upward 
from the top of the phonon spectrum, the renormalization 
δK2 must be positive, i.e. the DB has to harden the bonds. 
It takes place if the quartic anharmonicity prevails over the 
effects of the cubic anharmonicity according to the condition 
(2). However for usual pair potentials (Morse, Lennard-
Jones, Born-Mayer-Coulomb), the opposite case takes place: 
κ does not exceed even 1/2. Therefore for such (usually called 
as "realistic") pair potentials one cannot expect to obtain DBs 
in chains with the frequencies above the phonon spectrum.

In 3D lattices, in comparison with the monoatomic 
chains the situation is changed due to the increase of the 
number of the actual bonds of an atom, the bonds with the 
more numerous distant neighbors inclusive. The result is the 
increasing stiffness of the lattice which in its turn leads to the 
reduced changes ξ  of the static lengths and to the decreased 
stemming from these changes the negative term in δK2 . 
This circumstance may favor the existance of DBs with the 
frequencies above the phonon spectrum in 3D case.

The aforementioned arguments are essential for metals 
where such DBs indeed can exist. Two types of these 
excitations may be distinguished: 1) DBs appearing already 
at small amplitudes and low energy E < 0.5 eV, and 2) DBs 
existing at rather large amplitudes and high energy only. 
DBs with large amplitudes have noticeable non-harmonic 
character.

The first type of DBs, existing in monatomic fcc and bcc 
lattices, characterized by the vibrations along the chains of 
the nearest neighbor atoms renormalize the elastic force 
constants of the main vibrating bonds as follows: 

2
2 3 42 3 / 4δ ξ= +K K K A . Here 2

3 2( / 2 )ξ = − K K A  is the 
expansion of the main vibrating bonds, 2 2

2 0 2/ν= >K M r K  is 
the mean elastic force constant in the bulk, ν is the longitudinal 
velocity of sound, r0 is the equilibrium nearest-neighbour 
distance [15] (note that in the periphery of a DB the bonds 
are contracted). Consequently, analogously to a 1D atomic 
chain, cubic anharmonicity results in the local expansion of 
the lattice. This expansion also gives a negative contribution 

to the elastic springs, although somewhat smaller than in the 
chain. To split a DB frequency from the top of the phonon 
spectrum upward, the effect of cubic anharmonicity should 
be less than that of quartic anharmonicity. Such a situation 
takes place if

2
2 4 33 / 4 1.κ = >K K K

 	 (4)
Let us notice that in a 3D lattice the effective renormalized 

elastic spring 2K  is stronger than 2K  in the corresponding 
linear chain and condition (4) may be easier fulfilled in 
comparison with the condition (2). However, as a rule 2K  
exceeds 2K  only a little (roughly 10÷20 %) and the increase 
of the ordinary value of κ <~ 0.5 is not sufficient. The required 
increase may be possible only if the interaction between 
atoms is essentially different from that described by usual 
pair potentials. Possible candidates here are metals: due to 
the presence of free electrons and Friedel oscillations of the 
pair potentials caused by the screening of the interatomic 
interactions by these electrons cubic anharmonicity for small 
displacements of atoms from their equilibrium position. In 
Ref. [15] it was shown that in some metals, e.g. in metallic 
Ni and Nb the criterion (4) is indeed fulfilled for small 
displacements and the DBs with the frequency above the 
phonon spectrum do exist.

However it appeared that in some metals (e.g. in iron 
and copper) may exist DBs with large vibrational amplitudes 
and energy altough the criterion (4) is unfulfilled (κ~  is 
remarkably less than unity) and DBs with small amplitude 
and energy cannot exist. The reason of that is as follows. As 
we have mentioned above, the factor preventing the existence 
of DBs with the frequencies above the phonon spectrum is 
the local expansion of the main vibrating bonds. In 3D lattices 
this expansion is localized, which means that it is practically 
stopped at the very nearest periphery of the DB. The required 
additional compressing forces are caused by the interactions 
with the atoms, positioned outside the main vibrating chain, 
and have superlinear dependence on the expansion. Thus, a 
possibility can arise to appear well-localized DBs with rather 
large vibrational amplitudes. The static changes of the lengths 
of the interatomic bonds in the actual central region of such 
a DB are not proportional to 2A , the basic assumption of the 
criterion (4). The contribution of the higher harmonics may 
also become significant in such DBs.

Besides it appeares that in covalent crystals with 
diamond structure (diamond, Si, Ge) may also exist DBs 
with the frequency above the top of the phonon spectrum 
although the cubic anharmonicity of every bond in these 
compounds is remarkable ( 3 2 4| | >K K K ). Every atom in 
these structures is connected by strong covalent bonds 
with four atoms positioned at the vertexes of a tetrahedron. 
An essential property of these bonds is their strong 
orientation dependence resulting in strong resistance of the 
tetrahedrons against the distortion of their shape. Therefore 
the interactions with the atoms positioned out of the main 
vibrating bond direction reduce the local expansion which in 
its turn hinders the softening of the main bond. This makes 
possible the existence of DBs with the frequency above the 
top of the phonon spectrum in these structures. Note that the 
same structural peculiarity is the cause of the extremely small 
thermal expansion of these systems.
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2.1. Numerical modelling of standing DBs in metals

In our calculations of DBs in metals we use the embedded 
atom model (EAM) [9, 10], which takes the electron density 
into account. According to this model the potential energy 
of a crystal can be presented in the form

1 ( ) ( ).
2

ρ= +∑ ∑nn' n
nn' n

E V r F 	 (5)

Here V(rnn' ) is a pair potential as a function of the distance 
rnn' between atoms n and n', the volume dependent functions 
F represent the ”embedding energies” via the ”host density” 
functions ρn = Σn≠n' ρ(rnn' ) induced at site n by all other atoms 
in the system. The ”host density” is assumed to be composed 
of contributions of single host atoms (”atomic density” 
functions ρ(rnn' )). The division of E into two terms can be 
done in such a way that the contribution of the second term 
will be small for configurations close to the equilibrium. Such 
division is appropriate for consideration of anharmonic forces 
in DBs: due to the short-range origin of these forces, their 
corrections induced by the second term in Eq. (5) are small. 
In contrast, the harmonic forces, as a rule more remarkably 
affected by extended interactions, may be influenced by the 
embedding energy more significantly. According to (5) one 
can reasonably calculate the force constants 2

~K , K3 and K4 
and use criterion (4) to estimate the possibility of the first 
type DBs in the system.

An example showing the feasibility of the criterion (4) is 
metallic nickel. The EAM potential of this metal is well known 
with rather high accuracy. The values of the anharmonic springs 
are K2 = 2.32 eV/Å2, K3 = −11 eV/Å3 and K4 = 73 eV/Å4 [15]. 
This gives κ = 1.05. This is much larger than one gets for 
common pair potentials in ionic crystals. The reason for that 
is small value of odd anharmonicity parameter K3 which is a 
consequence of presence of conducting electrons in Ni. The 
longitudinal sound velocity in Ni at room temperature equals 
ν = 5266 m/sec. This gives 2

~K  = 2.75 eV/Å2 and κ~  = 1.24. 
Hence, in Ni the condition κ~   >  1 is fulfilled. Taking into 
account that the approximation of the EAM potential by forth 
power polynomial works reasonably well for vibrations with 
amplitudes < 0.25 Å one can expect that low energy DB can 
exist in this metal. MD simulations confirm this conclusion 
[15]. Another metal when DBs of small amplitude and with 
the frequencies above the top of the phonon spectrum can 
exist is metallic niobium [15]. In this metal also κ~   >  1 
although it value is very close to the limit κ~  = 1.

In many other metals the criterion (4) is not fulfilled. 
However, as it has been mentioned above our MD simulations 
show that at least in some of such metals DBs may still exist; 
their properties well fit to the second type DBs described in 
the previous section. Good examples of such DBs have been 
found in copper (Cu, fcc lattice). In this metal, the forth 
degree polynomial approximation of the first term of EAM 
potential proposed in [41, 56] gives for the force constants 
the values: K2 = 2.1 eV/Å2, K3 = −5.8 eV/Å3, K4 = 6.9 eV/Å4. 
This gives κ = 0.3, i.e. κ is much less than unity. The corrected 
mean elastic force constant equals to 2

~K  = 2.32 and the 
corresponding parameter κ~  = 0.32 is also much less than unity. 
Nevertheless, according to our simulations even DBs with the 
energy between 4.05 eV and 6 eV can exist in 3D Cu lattice. 

Examples of such DBs are given on Figures 1 and 2. The data 
about the aforementioned DBs are collected in Table 1. Here 
the DB energies, frequencies, vibrational amplitudes (with 
initial phases) and the corresponding static shifts of a central 
atom and its five neighbors in the main atomic chain of DBs 
positioned along (110) axis (atoms (n,n,0), n = 0, 1, 2, 3, 4, 5) 
are presented. The displacements un in the central chain of 
even DBs satisfy the symmetry conditions u−n−1 = −un. The 
atoms are vibrating in (110) direction. Note that in the case of 
the DB with the energy E = 4.05 eV, the frequency νl = 8 THz 
exceeds the top phonon frequency νM = 7.9 THz very slightly.

From these data one can clearly see the existence of 
the compression effect in the main atomic chain. Such 
compression reduces the expansion of the chain and 
compensates the effect of the elongation of the central 
interatomic bonds caused by the odd anharmonicity of the 
atomic forces. As it has been mentioned in the previous 
section, the result is the higher local stiffness of the lattice 
and the possibility to appear DBs with frequencies above the 
phonon spectrum. Consequently the properties of the DB in 
Cu indeed agree with the described above properties of the 
second type DBs.

Another example of the second type DB appears in 
the bcc lattice of iron. In EAM proposed for the bcc iron 
(Refs. [8, 56]), the pair potential V(r) near the equilibrium 
may be approximated by a polynomial of the forth degree 
determined via the harmonic and anharmonic force 
constants K2 = 2.81 eV/Å2, K3 = −12 eV/Å3, K4 = 45.2 eV/Å4. 
The corrected effective harmonic force constant in this metal 
equals to 2

~K  = 3.33 eV/Å2. The corresponding parameters 
κ = 0.66 and κ~   =  0.78 are less than unity although much 
closer to this value than in Cu. By analogy the existence of 
DBs above the phonon spectrum may be also expected in 
this metal although with more modest energies than in Cu. 
Our numerical simulations confirm this expectation as even 
DBs with energy between 0.5 eV and 3.5 eV were indeed 
generated in our computations (see Figure 3). The frequencies 
of the small energy DBs are close to the maximum phonon 
frequency (see Figure 4 and Table 2).

To verify the 3D origin of the DBs in Cu and Fe we 
performed also simulations of nonlinear dynamics in 1D Cu 
and Fe lattices with the same pair atomic interactions as in 
the 3D case. Indeed the calculations prove that in these 1D 
lattices DBs with neither small nor large amplitudes can be 
generated.

3. Standing DBs in Ge and diamond

DBs with the frequencies located above the phonon 
spectrum may also exist in covalent crystals with diamond 
structure. Such DBs appeared in the numerical simulations 
of Voulgarakis et al. [55] in Si whereby the atomic potential, 
proposed by Tersoff [53, 54], was applied. We have performed 
similar calculations for Ge which results are given in Figure 5.

The lattice structure of these crystals is presented by two 
fcc lattices, shifted with respect to each other by the vector 
a0(1/4, 1/4, 1/4) (a0 is fcc lattice constant) whereby the nearest 
neighbors of every atom are positioned in the vertexes 
of a tetrahedron and no atomic chain formed by nearest 
neighbor atoms can exist. In these systems the atomic forces 
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are essentially determined by the covalent chemical bonds 
characterized by strong dependence on direction. Due to 
the contribution of many-body forces, the interactions with 
the next to nearest and even next to next to nearest atoms 
may be significant. In these crystals the simple condition 
(4) is always violated. Because the basic assumptions of this 
condition (a quasi-chain character of the DB and the atomic 
interaction described by a simple pair potential determined 
via some force constants) are not justified here, it can be 
supposed that the resistance of the vibrating bonds against 
their expansion can exceed the softening of the bonds caused 
by the odd anharmonicity of them. Indeed, in our molecular 

dynamic simulations, a well-located DB with the central bond 
between two nearest neighbor atoms along a (111) axis, arises 
in a Ge crystal. The frequency of DB ≈10.07 THz exceeds 
significantly the upper limit of the phonon spectrum ~9.2 
THz. Thereby the interval of the large vibrational amplitudes 
of the central bond (~0.42 Å), inducing DBs, is very limited 
even in comparison with the situation in Si [55] and the band 
of the DB frequencies is extremely narrow producing a large 
gap (~0.8 THz) with the phonon spectrum. The main reason 
of such DB is the strong stiffening of the central bond in its 
extreme, most elongated position due to the fast switching-off 
of the interatomic forces. The simulations have been carried 

Fig. 1. DB in Cu: time dependence of the vibration of the central atom 
(n = 0) and the third side atom (n = 3) along (110) axis with the 
frequency 8 THz.

Fig. 2. Spectra of vibrations of Cu atoms in metallic Cu for two DBs 
with different frequencies and amplitudes in (1,1,0) direction. The 
vibrational amplitudes of central atoms of DBs indicated by arrows.

Table 1. Even DBs in Cu. Energy, frequency and shape (vibrational 
amplitudes and static shifts of atoms in (110) central chain of DB, 
both in Å).

Fig. 3. DB in Fe: time dependence of the vibration of the central atom 
(n = 0) and the third side atom (n = 3) along (111) axis with the 
frequency 10 THz.

Fig. 4. Spectra of vibrations of Fe atoms in metallic Fe for two DBs 
with different frequencies and amplitudes in (1,1,1) direction. The 
vibrational amplitudes of central atoms of DBs indicated by arrows.

Table 2. Even DBs in Fe. Energy, frequency and shape (vibrational 
amplitudes and static shifts of atoms in (111) central chain of DB, 
both in Å).

E
(eV)

ν
(THz)

A0

ξ0

A1

ξ1

A2

ξ2

A3

ξ3

A4

ξ4

A5

ξ5

4.05 8.0 0.271
0.032

-0.229
0.078

0.161
0.087

-0.093
0.066

0.045
0.040

-0.019
0.022

6.0 8.4 0.373
0.061

-0.314
0.154

0.218
0.175

-0.120
0.135

0.049
0.080

-0.016
0.043

E
(eV)

ν
(THz)

A0

ξ0

A1

ξ1

A2

ξ2

A3

ξ3

A4

ξ4

A5

ξ5

0.5 9.3 0.099
0.011

-0.075
0.025

0.045
0.024

-0.022
0.016

0.010
0.009

-0.004
0.005

3.5 12.4 0.249
0.070

-0.202
0.179

0.125
0.208

-0.056
0.165

0.016
0.103

-0.003
0.059
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out in a cluster in the form of a hexagonal prism elongated 
along (111) axis and containing 93500 atoms.

Analogously to the simulations of Ref. [55], our attempts 
to simulate DB in diamond using the Tersoff potential, 
failed. Even the positive results in Ge are connected with 
large amplitudes of DBs, i.e. with such interatomic distances 
where the aforementioned potential may not describe the 
interatomic forces adequately. Therefore we repeated the 
MD simulation in diamond using a more advanced LCBOP 
potential proposed recently in [33], which takes into account 
the bond orientation and the switching-off effects more 
accurately. Using this potential we have found rather good 
DBs (see Figure 6).

The MD simulations of DBs were performed in a rather big 
cluster 30×30×30 (216000 carbon atoms). The total phonon 
density of states (DOS) was calculated for 100K as a result of 
6500000 MD steps (time step = 0.002 psec) using periodical 
boundary conditions. To excite DB in diamond lattice the 
two nearest carbon atoms were shifted in the opposite phase 
along (111) direction. The DBs with frequencies above the 
phonon spectrum were generated at relatively small shifts 
already.

4. Moving DBs with frequencies 
above phonon spectrum

Up to now, immobile DBs have been discussed in this 
chapter. However, at least in fcc and in bcc lattices, the 
upward splitted DBs can move along the chains of the 
nearest neighbor atoms. It has been demonstrated via our 
MD simulations in Cu, Fe and Ni (see Figures 7 - 9). In our 
simulations of mobile DBs in Cu the clusters with 60×60×41 
copper atom cells and 60×60×60 iron atom cells were used; 
for an extended motion in iron, cluster 12×12×12, prolonged 
in the (111) direction to have 200 atoms in the (111) chain, 
was used. To generate a moving DB we fix the initial atomic 
positions according to a standing DB and assign small initial 
velocities to two central atoms in the main atomic chain. The 
velocities of the generated mobile DB may be different but 
remain always small in comparison with the sound velocity. 
To calculate moving DBs in Ni, a rectangular parallelepiped 
orientated and elongated along the moving direction (110) 
containing 40856 atoms was used. In this cluster the DB 
moves along the chain of 70 atoms; the center of the DB 
initially was at the position of the 20th atom of the chain

Fig. 5. DB in Ge: time dependence of vibrations of central atom (solid 
line) and the first non-central neighbors: a) along (111) axis (dashed 
line), b) perpendicular to (111) axis (dotted line) with the frequency 
10.07 THz.

Fig. 6. Spectra of vibrations of carbon atoms in diamond with LCBOP 
interatomic potential for three DBs with different frequencies and 
amplitudes in (1,1,1) direction. The vibrational amplitudes of central 
atoms of DBs indicated by arrows.

Fig. 7. Moving DB in Cu: time dependence of the vibrations of the 
atoms number 40, 45 and 50 in the (110) lattice chain (initially DB 
was localized close to the atom number 0 (n = 0) in the centre of the 
chain).

Fig. 8. Moving DB in Fe: time dependence of the vibrations of the 
atoms number 70, 80 and 90 in the (111) lattice chain (initially DB 
was localized close to the atom number 0 (n = 0) in the centre of the 
chain).
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5. Transverse discrete breathers

There are systems in which the odd anharmonicities 
disappear due to symmetry arguments; at the same time, the 
quartic anharmonicity is non-zero and it is hard (positive). 
The examples of such systems are given by the linear 
atomic chains and by the planar atomic structures (e.g. 
graphene); in these systems odd anharmonicities disappear 
for vibrations in the transverse (out-of-chain and out-of-
plane) direction. Therefore, one can expect that in these 
systems there can exist transverse anharmonic local modes 
with the frequencies above the maximum frequency of the 
corresponding phonons. The latter frequencies are usually 
smaller than the maximum frequency of longitudinal/
in-plane phonons. These modes fall in resonance with these 
phonons and can decay. However, unlike pseudolocal modes 
and like local modes the interaction causing the decay of 
these modes is anharmonic. We call them as the transverse 
discrete breathers (TDBs). The anharmonic interaction of 
TDBs with small vibrational amplitudes of atoms is weak. 
Hence, one can expect that the lifetime of such TDB may be 
rather long. Below we will consider TDBs in a monatomic 
chain and in graphene, both analytically and numerically. 
Our considerations confirm the aforesaid expectation.

5.1. Transverse discrete breathers in anharmonic 
chain

First we consider the anharmonic monatomic chain and 
examine the vibrations of its atoms in transverse (y) directions. 
We suppose that the potential energy U of the chain is given 
by the sum of pair potentials V(Rn,n' ), where Rn,n' is the 
distance between the atoms n and n'. The latter potentials 
can be expanded into the series of atomic displacements. 
Denoting d = (n−n' ) a, x = xn − xn' , y = yn − yn' , where a is the 
atom spacing, xn and yn are the longitudinal and transverse 
displacements of the atom number n from its equilibrium 
position, we get 22

, )(= yxdRR nn ++≡ ′ . As y appear as y2, 
any power expansion of R will have only even powers of y. 
The same holds for U. This means that U indeed has no odd 
anharmonic terms. This is a consequence of the symmetry of 
the chain with respect to the change of the sign of y.

Note one more property of the chain: the term in the 
expansion of R, quadratic with respect to y, has the same 

numerical factor as the term linear with respect to x. The same 
holds also for an arbitrary power of R. In the equilibrium 
state all linear terms with respect to the coordinates x in the 
potential energy U are cancelled. Therefore, all quadratic 
terms with respect to y are also cancelled, i.e the frequencies 
of transverse vibrations in the pair potential approximation 
tend to zero. As a result the long-range fluctuations can be 
created with little energy cost and since they increase the 
entropy they are favored. This leads to the instability of the 
chain with respect to small transverse distortions (see in this 
connection the Mermin-Wagner theorem [39]).

To get the chain stable one needs to stretch it [6]. In 
this case the atom spacing a is replaced by a + s, where s is 
stretching. Then the terms in U linear with respect to x and 
y2 are not cancelled any more. Therefore, the elastic springs 
for transverse vibrations are also nonzero and positive. This 
results in the appearance of transverse phonons with finite, 
although small for small stretching maximum frequency ωtm. 
As these phonons do not have any cubic anharmonicity, but 
have nonzero positive quartic anharmonicity, low-frequency 
TDBs with the frequency above the spectrum of transverse 
phonons should exist here. These modes fell to resonance 
with longitudinal phonons and therefore can decay. However 
there are two reasons for this decay to be be very slow: 1) 
the interaction of TDBs with longitudinal phonons, causing 
the decay is anharmonic and is relatively week, 2) due to 
low frequency, TDBs get to resonance with long-wave 
longitudinal phonons which weakly interact with the TDBs.

Let us consider the TDB in a monatomic chain with the 
Morse pair potential 

( ) 2(1 ) .α −= − a rV D e 	 (6)
Here D is the energy of dissociation, α is the parameter. 
We are using dimensionless coordinates with the units 
corresponding to a = 1 and the value α = 4 of the Morse pair 
potentials of atoms in monatomic metals. For this potential 
only nearest-neighbor interactions are essential and only 
these potentials will be taken into account here. We also take 
for the mass units the mass of the atoms of the chain (M = 1). 
The dissociation energy is chosen so that the unit frequency 
will correspond to the maximum frequency of longitudinal 
phonons. In this case the potential energy of the stretched 
lattice is the sum of the following pair potentials (up to a 
constant term):

4( 1) 2 4 4(1 ) /128 (1 ) /16,− − − −= − − −r s sV e x e e 	 (7)
where 

x
. The last term in Eq. (7) accounts 

for the effect of the stretching force of the chain in x 
direction — it changes the equilibrium distance of the atoms 
from r = 1 to r = 1 + s. Let us expand the potential into the 
series of x and y and take into account up to the second-order 
terms with respect to x and forth-order terms with respect 
to y. We get (up to a constant)

2 2 2 41 2 3 4( , ) ,
8 8 8 32
ν ν ν ν

≈ + + +V x y x sy xy y 	 (8)

where νi are dependent on stretching s parameters. In the 
small s limit νi ≈ 1. If s = 0.05 then ν1 ≈ 0.522, ν2 ≈ 0.707, 
ν3 ≈ 0.463, ν4 ≈ 0.441.

The pair potential of the longitudinal vibrations alone 
is given by the first term in the right-hand side of Eq. (8). 
Vibrational frequencies of corresponding phonons are 

Fig. 9. Moving DB in Ni: the time dependence of the vibrations of the 
atoms number 6 and 23 in the (110) lattice chain (initially DB was 
localized close to atom number 0 (n = 0) – 20th atom of the chain).
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given by Eq. (1) with K2 = ν1 /4. The maximum frequency 
of longitudinal phonons corresponds to k = −π and equals 

1ω ν=lm . The transverse vibrations alone are described by 
the pair potential

2 42 4(0, ) .
8 32
ν ν

= +
sV y y y 	 (9)

In harmonic approximation (ν4 = 0) the frequencies of 
corresponding phonons are given by Eq. (1) with ν2 /4 instead 
on K2. The positive quartic anharmonicity in Eq. (9) leads 
to appearance of the anharmonic modes [31] (called here 
as TDBs) with the frequencies 2

0 1 / 4ω ω ε= +tm  above the 
maximum frequency of transverse phonons 2ω ν=tm s  and 
with the displacements

yn(t) ≈ (−1)n A0 cosh−1(εn) cos(ω0t).	 (10)
Here A0 is the amplitude of the central atom,

4 03 /ε ν ω= tmA 	 (11)
is the reversed size of the TDB (we use the discrete analog of 
the derived in Ref. [31] equation (47) for the difference in the 
displacements of two neighbouring atoms χ(x)). These modes 
interact with longitudinal phonons and, therefore, they decay. 
To describe this decay we consider the longitudinal vibrations 
of atoms in the presence of the TDB. Taking into account Eq. 
(10) we replace y by y(t) in Eq. (8) and get the following pair 
potential for this motion:

2 2 21 3 3
0( , ) (0) (0)cos(2 ).

8 16 8
ν ν ν ω≈ + +V x y x xy xy t 	 (12)

The first term in the right-hand side of this equation 
gives the potential energy of the longitudinal vibrations 
alone in harmonic approximation. The second and the third 
terms describe the anharmonic interaction of these and 
transverse vibrations. At that the second term stands for a 
small local compression, while the third term describes the 
force with the frequency 2ω0 periodically changing in time. 
For all longitudinal phonons, except those with the resonant 
frequency ωk = 2ω0 , this force causes forced vibrations of 
atoms with the frequency 2ω0 . The resonant term causes 
the increase of the energy of phonons in time. From energy 
conservation law it follows that this energy comes from the 
TDB, i.e. the TDB decays.

5.2. Decay rate of transverse discrete breathers in 
chain

To find the rate of decay of TDBs, we are considering the 
equation of motion of the longitudinal phonon with the 
coordinate 

xk = N−1/2∑n xn sin(kn),	 (13)
where N >> 1 is the number of atoms in the chain, k =2πm/N 
is the wave number of the phonon, m = 0, ±1, ± 2, …, xn is 
the displacement of the atom n from its equilibrium position 
(we use the periodic boundary conditions). In the case of pair 
potential (12) this equation reads

(
)

2 23
0, 1 0,

2
0, 0, 1 0

sin( ) ( )
16

( ) cos(2 ),

νω

ω

∞

+
=−∞

−

≅ − + − −

− −

∑k k k n n
n

n n

x x kn y y
N

y y t



	 (14)

where ωk is the frequency of the longitudinal phonon k given 
by Eq. (1) with K2 = ν1 /4, y0,n ≡ yn(0) is the initial amplitude of 

the transverse DB on atom n given by Eq. (10). The first term 
in the right-hand side of Eq. (14) stands for the harmonic 
force stemming from the first term in the right-hand side of 
Eq. (12) and the second term accounts for the anharmonic 
force stemming from the third term in the right-hand side 
of this equation (a small compression of the chain stemming 
from the second term in the right-hand side of Eq. (12) is 
neglected). The transverse amplitude |y0,n | slowly changes 
with n. Therefore, y0,n+1 – y0,n ~= 2y0,n and

(y0,n+1 – y0,n )
2 – (y0,n – y0,n–1 )

2 ≈ 4∂y2
0,n /∂n.	 (15)

Inserting Eq. (15) into Eq. (14) and taking into account 
Eq. (10), we get

2 1/2
0cos(2 ),ω ω−+ ≅k k k kx x C N t 	 (16)

where 
23
0 2

2
3 0 3

0

1sin( )
4 cosh ( )

sinh( )sin( ) .
cosh ( )

ν
ε

εεν
ε

∞

=−∞

∞
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∑
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n n
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n

	 (17)

By using the Green’s function of harmonic oscillator 
Gk(t) = ωk

–1 sin(ωk t), the solution of Eq. (16) can be presented 
in the following form:

xk(t) = x0,k cos(ωk t) + x'k(t),	 (18)
where

0
0

'( ) sin( ( '))cos(2 ') '.ω ω
ω

= −∫
t

k
k k

k

Cx t t t t dt
N

	 (19)

The first term in Eq. (18) (∝ x0,k ) stands for free oscillations, 
while the second term (x'k(t)) describes the excitation of 
vibrations by the transverse mode. The energy of the excited 
vibrations is given by the sum of the terms ωk

2 x'k
2 averaged 

over period and summed over all phonons. This gives
2

0
0

0
0

1( ) 'sin( ( '))cos(2 ')

"sin( ( "))cos(2 ") .

ω ω

ω ω

= − ⋅

⋅ −

∑ ∫

∫

t

k k
k

t

k

E t C dt t t t
N

dt t t t 	 (20)

Let us take into account the relations:
sin(ωk (t − t' )) sin(ωk (t − t" )) = 

= (cos(ωk (t' − t" )) − cos(ωk (2t − t' − t" )))/2, 
cos(2ω0 t' ) cos(2ω0 t" ) = 

= (cos(2ω0(t' − t" )) + cos(2ω0(t' + t" )))/2. 
At large t due to the summation over k and integration 

over t' and t" only the term with argument (ωk – 2ω0)(t' – t" ) 
can give a remarkable contribution to the energy E(t); all 
other terms average out. This gives 

2
0

0 0

1( ) ' "cos(( 2 )( ' ")).
8

ω ω≅ − −∑ ∫ ∫
t t

k k
k

E t C dt dt t t
N

	(21)

For small |t' – t" | being essential here one can replace the 

integral 
'

1
0 0 0 '

' " τ
−

=∫ ∫ ∫ ∫
t t t t

t
dt dt dt d  by the integral 1

0
τ

∞

−∞
∫ ∫
t
dt d , where 

t1 = (t' + t" )/2, τ = t' – t". As a result, in the t → ∞ limit the rate 
of increasing of the energy of longitudinal phonons, followed 
by a subsequent decrease of the energy of the TDB under 
consideration, equals 

dE(t)/dt = (π/4N)∑kCk
2δ(ωk – 2ω0).	 (22)

Replacing here the sum by the integral and taking into 
account the relations dm/dk = N/2π and dk/dωk = 4ωk /sin k 
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one finds
dE/dt ≈ (ω0ν3

2A0
4/sin k0) Φ2(Ω),	 (23)

where 2
0 1 / 4,ω ω ε= +tm  k0 = arccos(1 – 8ω0

2/ν1), Ω = k0/ε, 

0 43 / ,ε ν ω= tmA

	 (24)

The decay constant Γ of the TDB is determined by 
the equation Γ = E–1dE/dt. The energy of the TILM equals 
E = ω0

2 ∑n yn
2(0)/2 = ω0

2A0
2/ε. If to use the dissociation energy 

D in electron-volts then we get 
2 2

23 0

0 0

( ).
sin

εν
ω

Γ = Φ Ω
A

k
	 (25)

Γ decreases with decreasing of the amplitude of the central 
atom A0 of the TDB. To get an estimation we consider the 
TDB with the amplitude A0 = 0.03 in the 5% stretched chain 
(s = 0.05). In this chain ωtm ≈ 0.1880, ε ≈ 0.183, ω0 ≈ 0.1888, 
which gives Ω ≈ 6 and Φ2(Ω) ≈ 2·10–5. As a result we get 
Γ ≈ 5·10–9. This corresponds to a very long lifetime.

5.3. Numerical study of transverse discrete breathes 
in the chain

In our numerical study of transverse DBs we considered a 
5% stretched chain with 40 000 atoms and with fixed ends. 
The small compression of the entire chain due to TDB was 
taken into account. The potential energy was described by 
the interactions of the nearest neighbors with the Morse pair 
potential given by Eq. (6). We have found that TDBs indeed 
exist in this chain and they have a long lifetime (see Figures 
10-12; one period of the TDB with the frequency ω0 ≈ 0.1888 
corresponds to 33 time units). E.g. in our numerical 
simulations we have found that the TDB with A0 = 0.03 and 
s = 0.05 has the frequency ω0 ≈ 0.1883 and the reversed size 
parameter ε ≈ 0.113. It decays very slowly: its amplitude 
diminishes less than 2·10–8 for 1000 periods of vibrations. 
This corresponds to Γ < 2·10–11, which indeed gives very long 
lifetime, in agreement with the conclusion of the theory.

The TDBs with the amplitudes A0 ≥ 0.05 decay faster; the 
rate of their decay rapidly increases with the increasing of the 
amplitude. This is also in agreement with the theory.

Concerning the difference of the above-presented 
numerically-found values of the parameters ε and ω0 from 
their theoretical values, we have found that these differences 
come from the neglecting of the local compression of the chain 
in the theory. This follows from the numerical simulations of 
TDBs in the chain rigid in x direction (with x coordinates of 
atoms being fixed at their values without TDB), performed 
by us. We have found the TDB in this chain with ε ≈ 0.183 
and ω0 ≈ 0.1888 in full agreement with the above theoretically 
found values of these parameters. This TDB does not decay, 
as it should according to the theory presented above. An 
account of the compression mentioned in the theory, allowing 
one to explain the values ε ≈ 0.113 and ω0 ≈ 0.1883 found in 
simulations, is given in [21] in Appendix. Note that if to use 
these values of ε and ω0 in Eq. (25) we get Γ ≈ 2·10–13. This 
corresponds to an extremely long lifetime.

When describing TILMs, the dimensionless units were 

used. To give an idea about the actual values of energies of 
TILMs under discussion, we present here also the energy of a 
TILM in the dimensional units: 

2 2
0 032 ( / ) /3 (4 / 3 / ).= +E D A a S a s a A a 	 (26)

E.g. for D = 10 eV, A0/a = 0.05, s/a = 0.05 one gets 
E = 0.43 eV. A TILM with such energy may live more than 
one second supposing that ωlm ~ 1013 sec−1.

Above we described only standing TDBs. We also 
performed numerical study of transverse vibrations with 
nonzero total momentum in longitudinal direction and have 
found that TDBs can move along the chain (see Fig.  13). 
Depending on the value of the initial momentum, the velocity 
of TDBs can be smaller or larger. Only TDBs moving with 
small velocity as compared to the velocity of phonons were 
found.

3
0

sin( )sinh( )( ) .
cosh ( )

∞ Ω
Φ Ω = ∫

x x dx
x

Fig. 10. Time dependence of the transverse shifts (in the units of 
atom spacing) of the central atom of a transverse DB in 5% stretched 
monatomic chain; the initial shift of the central atom is 0.05. First 10 
periods and 10 periods after 1000 periods of vibration are presented.

Fig. 11. The same as in Figure 10, but the initial shift of the central 
atom of a transverse DB is 0.15.

Fig. 12. Time dependence of the amplitudes of the central atom of 
transverse DBs in 5% stretched monatomic chain for different initial 
shifts of the central atom.
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6. Graphene: out-of-plane vibrations

The arguments presented in the beginning of Section 5 can 
readily be extended to planar atomic lattices. To be specific, 
we are considering here a graphene sheet. It consists of 
carbon atoms constituting the honeycomb-type periodical 
structure. Every carbon atom in this structure is connected 
with three neighboring atoms by chemical bonds formed by 
the sp2 hybrid orbitales.

We suppose that in equilibrium positions the graphene 
is situated in the (x, y) plane. The distances between an atom 
and three neighboring atoms equal 

2 2 2( ) ( )= + + + +n n n n n nr b a x c a y z 	 (27)
(n = 1,2,3), where xn , yn and zn are the x-, y- and z- components 
of the displacements of three neighboring atoms with respect 
to the central atom, b1 = 0, b2 = √3/2, b3 = –√3/2, c1 = –1, 
c2  =  1/2, c3 = 1/2. In the pair potential approximation the 
potential energy of the vibrations of atoms depends on the 
distances Rn = rn – a (explicit form of this energy in harmonic 
approximation, see e.g. in [1]). The expansion of these 
distances over the displacements xn , yn and zn depends on the 
powers Rm = (bx + cy + (x2 + y2 + z2)/a)m (here the subscript 
n is omitted for simplicity). In the equilibrium position the 
∝ R terms are cancelled. Therefore, the expansion of a pair 
potential over z at x = y = 0 starts with the positive quartic 
term ∝ z4, i.e. the ∝ z2 terms are absent. Consequently, in 
the pair potential approximation the 2D lattice is unstable 
with respect to small out-of-plane distortions. However, in 
graphene the atomic interactions are determined by covalent 
forces. These forces cause the stiffness of the planes with 
respect to the transverse short-range displacements of atoms 
[1]. In accordance with the Mermin-Wagner theorem [39] 
the plane of graphene remains unstable with respect to long-
range transverse distortions, resulting in the appearance of 
ripples [12, 40]. A stretching of the graphene sheet removes 
the ripples.

The elementary cell of graphene includes two atoms. 
Therefore, there are two branches of out-of-plane vibrations: 
acoustic and optic. One can expect the existence of two types 

of out-of-plane TDBs in graphene – with the frequency 
above the top frequency of acoustic out-of-plane phonons 
(the acoustic-like TDB) and with the frequency above the 
top frequency of optic out-of-plane phonons (the optic-like 
TDB). The acoustic-like out-of-plane TDBs can decay due to 
a relatively weak anharmonic interaction with the in-plane 
phonons and also due to in general stronger harmonic 
resonant interaction with out-of-plane optic phonons. 
However, the optic-like out-of-plane TDBs can decay only 
due to a relatively weak anharmonic interaction with in-plane 
phonons. Therefore, the optic-type out-of-plane TDBs should 
have a longer lifetime.

This conclusion is in agreement with our numerical 
modelling of out-of-plane TDBs in weakly-stretched (1.5 
%) graphene. We have used the AIREBO potential and 
taken into account the cluster 246×210 Å (100×50 periods, 
20000 atoms) with periodical boundary conditions. Initially 
we displaced out-of-plane six atoms of C6 ring according to 
the optical mode. We found that out-of-plane optic TDBs 
indeed exist; see Figure 14 (where the time-dependences of 
the displacements of one of the three equivalent atoms of 
the central C6 ring are presented; the other three atoms in 
this ring vibrate out of phase with the mentioned atom) and 
Figure 15 (where in-plane and out-of-plane phonons DOS 
and the spectrum of out-of-plane TDB for different initial 
amplitudes of carbon atoms are given).

Note that in strongly-stretched graphene there can exist 
also in-plane anharmonic localized vibrations (in-plane 
discrete breathers) [3, 27]. It appears (see Ref. [27]) that 
strong uniaxial stretching (along the zigzag or armchair 
direction) results in the opening of the gap in the middle of 
the phonon spectrum of graphene. This makes possible the 
existence of in-plane soft DBs (discrete breathers) with the 
frequency in the gap of the phonon spectrum. The authors 
[3, 27] have found that these modes remain relatively stable 
also when, due to a large stretching, their frequencies get into 
resonance with out-of-plane phonons.

Thus, the physical situation discussed in Refs. [3, 27] is 
reversed to the one considered here: the anharmonic in-plane 
modes with soft anharmonicity are in resonance with out-of-

Hizhnyakov et al. / Letters on materials 6 (1), 2016 pp. 61-72

Fig. 13. Moving TDB in the 5% stretched monatomic chain: time 
dependence of transverse shifts of the atoms number 100, 103 and 
106. Vibrations of the atom number 103 get maximum later than 
vibrations of the atom number 100 and earlier than vibrations of 
the atom number 106 (initially TDB was localized close to the atom 
number 0 (n = 0) in the centre of the chain).

Fig. 14. Optical-type out-of-plane transverse DBs in graphene. The 
out-of-plane shifts (dependent on time) of one of three equivalent 
atoms of the central C6 ring is presented for initial amplitudes 0.4 
Å (upper) and 0.2 Å (bottom); the other three atoms in this ring 
vibrate out of phase with the atom mentioned.
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plane phonons, while out-of-plane TDBs considered here are 
in resonance with in-plane phonons. However, in both cases 
the lifetime of the modes is long.

7. Concluding remarks

In this communication we discussed discrete breathers 
in metals with frequencies above the top of the phonon 
spectrum. Two types of these excitation are recognized:  
1) DBs appearing already at small energy, and  
2) DBs existing only with large energy. The first type of DBs 
was found in metallic Ni and Nb [15]. The reason of existence 
of these excitations is the screening of the interaction 
between atoms by free electrons resulting in strong reduction 
of cubic anharmonicity near the equilibrium position of 
atoms. The second type of DBs was found in iron (Fe) 
[20] and copper (Cu) [19]. In these metals the superlinear 
response of the surrounding atoms on the local expansion 
of the lattice caused by the DB of a large amplitude leads to 
the essential reduction of this expansion and of the effect of 
odd anharmonicities. This in its turn results in the hardening 
of the effective elastic springs and in the increase of the 
frequency of an anharmonic modes with its amplitude.

We also have discussed DBs in semiconductors Ge and Si 
and in diamond, the frequencies of which too lie above the top 
of the phonon spectrum. The atomic forces in these crystals 
are essentially determined by the covalent chemical bonds 
resulting in strong orientation dependence. This dependence 
causes strong resistance of these systems with respect to the 
distortion of the main structural elements, p-tetrahedrons. 
Therefore the local expansion and softening caused by an 
anharmonic vibration in these crystals are essentially reduced 
already for small amplitudes.

We have shown that DBs in metals Fe [20], Cu and Ni [19] 
can move along the crystallographic directions corresponding 
to the chains of the nearest neighboring atoms. Especially 
impressive are moving DBs in Cu: they can transfer more 
than 5 eV energy on large distances. The actual distance of 
propagation can be estimated as follows. According to [18, 
22] the DBs can decay due to emission of pairs of phonons. 

At low temperatures the rate of emission should be three-
four orders of magnitude less than the frequency of the DB 
[22]. Taking into account that energy of DB in Cu may many 
hundred times exceed the energy of a phonon one can expect 
that the life time of the decay may exceed 10−8 sec and the 
distance of propagation may exceed 1μ. This means that DBs 
can efficiently transfer large (as compared to typical phonon) 
energy on large distance.

We also have shown that due to symmetry arguments 
in linear monatomic chains and in planar monatomic 
structures (e.g. graphene) odd anharmonicities disappear 
for the motion of atoms normal with respect to the chain/
plane. However, even (quartic) anharmonicity exists and is 
hard (positive). As a result, the anharmonic localized modes 
of transverse (chain) or out-of-plane (graphene) vibrations, 
called transverse discrete breathers (TDBs) can exist in 
these systems with frequencies above the transverse/out-of-
plane phonons. These vibrations have finite, although large 
lifetime due to slow anharmonic decay with creation of 
longitudinal phonons. For the case of a monatomic chain a 
theory is being developed which allows one to calculate the 
decay rate of TDBs. The theory predicts that the lifetime of 
the TDBs under consideration may be extremely long, longer 
than 1010  periods of vibration. The numerical modelling of 
these TDBs fully confirms this result. As we have shown 
these TDBs can move. The normal (out-of-plane) TDBs with 
the frequency above the phonon spectrum of out-of-plane 
phonons were also found for weakly-stretched graphene.

The symmetry argument presented here holds generally 
for linear atomic chains and planar monolayer atomic 
structures. Therefore, one can expect the existence of TDBs 
in any linear atomic chain and any planar monolayer atomic 
structure. Besides, one can expect that an analogous situation 
may exist in 3D lattices with dominating chain and layer 
structural elements, e.g. in graphite and in mica. In such 
lattices odd anharmonicities exist, but they may be essentially 
reduced for out-of-chain/plane vibrations.

In this connection we would like to point to investigations 
of M. Russell et al. of muscovite mica irradiated by high 
energy particles (see, e.g. [45]). The irradiation produces in 
mica very long black tracks parallel to the crystallographic 
planes and localized between the layers. These tracks are 
explained in Ref. [45] by creation in the recoil process of 
discrete breathers which propagate on long distance along 
the crystallographic directions. The layered structure on 
atomic scale plays a crucial role in the observed phenomena. 
Although it is not yet clear whether these long-living 
vibrational excitations are transverse or longitudinal, the 
necessity of the layered structure on atomic scale to observe 
the phenomenon gives support to an assumption that these 
excitation should contain remarkable transverse component.

Analogous TDBs may be expected to exist also for surface 
vibrations in crystals with planar atomic surfaces. The change 
of the potential energy of a surface atom for the shift in outer 
direction also does not have any odd terms with respect 
to the shift. This leads to the decrease of the entire odd-
anharmonicity effects for out-of-plane surface vibrations, 
which may result in the appearance of out-of-plane TDBs 
with frequencies above the maximum frequency of transverse 
surface phonons and with a long lifetime.

Fig. 15. In-plane and out-of-plane phonon DOS for the AIREBO 
potential and the spectrum of out-of-plane transverse DB for 
different initial amplitudes of carbon atoms.
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It is known that next-to-next interactions in a chain can 
cause its zigzag-type secondary structure [49]. In such chains, 
e.g. in polyethylene, the mobile “solitons of tension” may 
exist [36] (involving the longitudinal-type motion of atoms). 
Besides, in such chains one should also expect the existence 
of transverse DBs. Here two types of transverse vibrations 
should be distinguished: parallel and perpendicular to the 
plane of zigzag. The odd anharmonic terms for the transverse 
displacements perpendicular to the plane mentioned are 
absent; however, for transverse displacements parallel to 
this plane these are present. If the zigzag angle is large, then 
the TDBs perpendicular to the plane of zigzag should exist. 
However, if this angle is small, then the odd anharmonicity 
for the displacements parallel to the plane of zigzag is reduced. 
In such chains the existence of both TDBs is expected. It is 
worthwhile to note that intrinsic localized modes (discrete 
breathers) are often used to explain the targeted energy 
transfer in such basic for living organism organic chains as 
DNA [5, 35] and proteins [44].
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