The effect of warm deformation by abc-pressing method on mechanical properties of titanium nickelide

A.I. Lotkov1, V.N. Grishkov1, A.A. Baturin2, E.F. Dudarev3, D. .Y. Zhapova1, V.N. Timkin1
1Institute of Strength Physics and Materials Science SB RAS, Akademicheskii pr. 2 / 4, Tomsk, 634055, Russia
2Institute of Strength Physics and Materials Science SB RAS, Akademicheskii pr. 2 / 4, Tomsk, 634055, Russia National Research Tomsk Polytechnic University, Lenina pr. 30, Tomsk, 634050, Russia
3Siberian Physical-Technical Institute at Tomsk State University, Lenina pr. 36, Tomsk, 634050, Russia
Abstract
The effect of temperature on the ultimate tensile strength (σuts) and fracture elongation (δ) under tension of titanium nickelide (50.2 at.% Ni) with initial coarse-grained structure and structures after abc-pressing at 873K (alloy 1, true deformation е = 2.2) and after “step-by-step” pressing at 873K→673K (alloy 2, е = 4.2) are studied. The grain dimensions in the samples of alloy 1 (2-40 μm) are smaller than ones in initial samples (20-70 μm). The structure of alloy 2 is submicrocrystalline (grain/subgrain dimensions are 100-700 nm). It was found that the martensitic transformations (MT) B2←→B19ʹ had been observed under cooling and heating of initial samples. The sequences of В2→R→В19ʹ→В2 MT were observed in alloys 1 and 2 (R – the rhombohedral martensitic phase). The finish of B19ʹ→B2 MT take place in the temperature range 340-355 K. The tension tests were carried out at temperatures 293K, 343K and 473K (or 523 K), i.e. in the B19ʹ phase, pretransition temperature range and B2 phase, accordingly. The “stress-strain” dependences obtained at these temperatures are quantitavely the same for all samples. The martensitic plateau connected with the reorientation and/or generation of the B19ʹ martensitic crystallites are observed under tension of samples at 293K and 343K. No the generation of stress-induced B19ʹ martensite was observed under tension at 473K (or 523K). The increase of σuts was found after abc-pressing. The maximum values of σuts are observed under tension of samples of alloys 1 and 2 at 293K and 343K (in B19ʹ phase). The alloy 1 demonstrates the highest plasticity (δ about 80%) at temperature range 293-343 K. The σuts and δ decrease essentially (about 2 times) with the temperature increase to 473K (or 523K).
Accepted: 09 June 2015
Views: 108   Downloads: 32
References
1.
V. Brailovski, S. Prokoshkin, P. Terriault, E. Trochu (Eds). Shape memory alloys: Fundamentals, Modeling and Applications. Montreal, ETS Publ. (2003) 844 p.
2.
Titanium nickelide alloys with shape memory. Part 1. Structure, phase transformation and properties. Ed. by V. G. Pushin. Yekaterinburg, Ural Branch of RAS (2006). 436 p. (in Russian) [Сплавы никелида титана с памятью формы. Ч.1. Структура, фазовые превращения и свойства . Под ред. В. Г. Пушина. Екатеринбург, УрО РАН (2006) 436 с.]
3.
R. Z. Valiev, I. V. Aleksandrov. Bulk Nanostructured Metallic Materials: Production, Structure and Properties. Moscow, Akademkniga (2007) 389 p. (in Russian) [Валиев Р. З., Александров И. В. Объемные наноструктурированные материалы: получение, структура и свойства. Москва. Академкнига (2007) 398 с.]
4.
A. I. Lotkov, V. N. Grishkov, O. A. Kashin, A. A. Baturin, D. Yu. Zhapova, N. V. Girsova, V. N. Timkin, K. V. Krukovsky, A. D. Bratchikov. Perspekt. Mater. 13, 931—938 (2011) (in Russian) [А. И. Лотков, В. Н. Гришков, О. А. Кашин, А. А. Батурин, Д. Ю. Жапова, Н. В. Гирсова, В. Н. Тимкин, К. В. Круковский, А. Д. Братчиков. Перспективные материалы. 13, 931—938 (2011).]
5.
A. Kreitcberg, V. Brailovski, S. Prokoshkin, D. Gunderov, M. Khomutov, K. Inaekyan. Mater. Sci. Eng. A. 622, 21—29 (2015).
6.
K. Y. Mulyukov, R. I. Babicheva Letter on Materials. 2 (4), 186—190 (2012) (in Russian) [Мулюков Х. Я., Бабичева Р. И. Письма о материалах. 2 (4), 186—190 (2012).]
7.
R. I. Babicheva, Kh. Ya. Mulyukov. Appl. Phys. A. 116, 1857—1865 (2014).
8.
A. I. Lotkov, V. N. Grishkov, E. F. Dudarev, Yu. N. Koval, N. V. Girsova, O. A. Kashin, A. N. Tabachenko, G. S. Firstov, V. N. Timkin, D. Yu. Zhapova. Inorganic Materials: Applied Research. 2, 548—555 (2011).
9.
A. I. Lotkov, V. N. Grishkov, V. I. Kopylov, A. A. Baturin, N. V. Girsova. Perspekt. Mater. 2, 396—398 (2007). (in Russian) [А. И. Лотков, В. Н. Гришков, В. И. Копылов, А. А. Батурин, Н. В. Гирсова. Перспективные материалы. 2, 396—398 (2007).]
10.
V. V. Stolyarov, E. A. Prokof’ev, R. Z. Valiev, S. D. Prokoshkin, S. B. Dobatkin, I. B. Trubitsyna, I. Y. Khmelevskaya, V. G. Pushin. The Physics of Metals and Metallography. 100, 608—618 (2005).
11.
V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, T. C. Lowe, V. T. Zhu. Mat. Sci. Eng. A. 410—411, 386—389 (2005).
12.
Shape memory effects and applications in medicine. Ed. by L. A. Monasevich. Novosibirsk, Nauka (1992) 742 p. (in Russian) [Эффекты памяти формы и их применение в медицине. Под ред. Л. А. Моносевича. Новосибирск. Наука (1992) 742 с.]
13.
D. V. Gunderov, E. A. Prokofiev, V. G. Pushin, R. Z. Valiev. Deformation and fracture of materials. 10, 13 (2007). (in Russian) [Гундеров Д. В., Прокофьев Е. А., Пушин В. Г., Валиев Р. З. Деформация и разрушение материалов. 10, 13—21 (2007).]
14.
V. G. Pushin, N. N. Kuranova, A. P. Dyupin, A. I. Lotkov, E. F. Dudarev, G. P. Bakach, Yu. R. Kolobov, R. Z. Valiev, D. V. Gunderov. The physics of Metals and Metallography. 106, 520—530 (2008).
Cited by
1.
Жапова Д.Ю., Лотков А.И., Гришков В.Н., Тимкин В.Н., Родионов И.С., Колеватов А.С., Белослудцева А.А., Известия высших учебных заведений. Физика 59(7-2), 60-64 (2016).