Development of martensitic transformation induced by severe plastic deformation and subsequent heat treatment in polycrystalline Ni52Mn24Ga24 alloy.

I.I. Musabirov1, I.M. Safarov1, R.R. Mulyukov1, I.Z. Sharipov1,2, V.V. Koledov3
1IMSP RAS, Khalturina 39, Ufa
2USATU, K. Marx 12, Ufa
3IRE RAS, Mokhovaya 11-7, Moscow
Abstract
The results of a study of the martensitic transformation in the polycrystalline Ni52Mn24Ga24 alloy in different structural states are presented in the article. In the initial state in the alloy magnetic and martensitic phase transformation is observed with the following characteristic points: MS=298 K (25°C); MF=288 K (15°C); AS=308 K (35°C); AF=318 K (45°C); TC=400 K (127°C). The alloy in the initial state, after intensive plastic deformation by high pressure torsion and after the stepped annealing of the deformed material at temperatures of 400°C, 500°C and 600°C was investigated. The microstructure of the alloy was investigated by means of scanning electron microscope equipped by the detector sensitive to orientation contrast of material. Analysis of the microstructure of the alloy in the initial state shows that the average grain size is 270 mkm. In the alloy after plastic deformation and subsequent annealing at 400°C, this value is 180 nm. Annealing at 500°C and 600°C leads to an increase in the average grain size up to 1.08 mkm and 2.33 mkm, respectively. The results of the study of the microhardness of the alloy in different structural states are presented. As a result of plastic deformation of the alloy the microhardness increases with 2.1 GPa in the initial state to 5.1 GPa in a deformed state. After annealing, a gradual decreasing of the microhardness of up to 2.8 GPa is found. The temperature dependence of magnetization of the alloy in different structural states shows that as a result of severe plastic deformation the ferromagnetic order is destroyed and the martensitic transformation is suppressed. After stepped annealing at 400°C, 500°C and 600°C, there is a gradual recovery of ferromagnetic order. The martensitic transformation is observed in the alloy only after annealing at 500°C. In this case the average grain size is increased to 1 mkm.
Received: 26 November 2014   Revised: 06 December 2014   Accepted: 08 December 2014
Views: 105   Downloads: 23
References
1.
W.H.  Wang, F.X.  Hu, J.L.  Chen, Y.X.  Li, Z.  Wang,Z.Y.  Gao, Y.F.  Zheng, L.C.  Zhao, G.H.  Wu, W. S.  Zan.IEEE Transact. Magn. 37(4), 2715 (2001).
2.
Kh.Ya. Mulyukov, I.I. Musabirov. The Russian J. of App.Phys. 53(6), 802 (2008).
3.
I.I.  Musabirov, K.Y.  Mulyukov, V.V.  Koledov,V.G.  Shavrov. The Russian  J. of App. Phys. 56(3), 423(2011).
4.
Kh.Ya.  Mulyukov, I.I.  Musabirov, R.R.  Mulyukov,V.V.  Koledov, V.G.  Shavrov, V.G.  Pushin. The Phys. ofMet. and Metallogr. 112(5), 488 (2011).
5.
Y.  Liu, X.  Zhang, D.  Xing, H.  Shen, D.  Chen, J.  Liu,J. Sun. J. of All. and Comp. 616, 184 (2014).
6.
K.Y. Mulyukov, I.I. Musabirov, A.V. Mashirov. Letters onMaterials. 2(4), 194 (2012).
7.
S.  Pramanick, S.  Giri, S.  Majumdar, S.  Chatterjee,V.V.  Koledov, A.  Mashirov, A.M.  Aliev, A.B.  Batdalov,B. Hernando, W.O. Rosa, L. González-Legarreta. J. of All.and Comp. 578, 157 (2013).
8.
V.D.  Buchelnikov, M.O.  Drobosyuk, E.A.  Smyshlyaev,O.O.  Pavlukhina, A.V.  Andreevskikh, S.V.  Taskaev,A.A. Fediy, V.V. Koledov, V.G. Shavrov, V.V. Khovaylo,V.V. Sokolovskiy. Solid State Phenomena. 168—169, 165(2011).
9.
A.M.  Aliev, A.B.  Batdalov, I.K.  Kamilov, V.V.  Koledov,V.G.  Shavrov, V.D.  Buchelnikov, J.  García, V.M.  Prida,B. Hernando. Appl. Phys. Lett. 97(21), 212505 (2010).
10.
V.A.  Chernenko, J.M.  Barandiaran, J.R.  Fernandez,D.P. Rojas, J. Gutierrez, P. Lazpita. I. Orue. JMMM. 324(21), 3519 (2012).
11.
E.T.  Kalimullina, A.P.  Kamantsev, V.V.  Koledov.Nelineinyi Mir. 12(2), 42 (2014). (in Russian)
12.
A.V.  Irzhak, D.I.  Zakharov, V. S.  Kalashnikov,V.V.  Koledov, D. S.  Kuchin, G.A.  Lebedev, P.V.  Lega,E.P.  Perov, N.A.  Pikhtin, V.G.  Pushin, I. S.  Tarasov,V.V. Khovailo, V.G. Shavrov, A.V. Shelyakov. J. of Comm.Tech. and Electr. 55(7), 818 (2010).
13.
Patent RUS 2305874, 10.09.2007.
14.
R.M.  Gizatullin, V.V.  Koledov, V.G.  Pushin,A.N. Chekhovoy. Composite Materials Constructions. 3,57 (2007).
15.
F. Xiong, Y. Liu, E. Pagounis. JMMM. 285(3), 410 (2005).
16.
R.N.  Imashev, Kh.Ya. Mulyukov, I.Z. Sharipov,V.G. Shavrov, V.V. Koledov.  Phys. of Solid State. 47(3),556 (2005).
17.
A.A.  Samigullina, R.K.  Khisamov, R.R.  Mulyukov.Letters on Materials. 2(3), 134 (2012).
18.
R.N. Imashev, V.V. Koledov, I.Z. Sharipov, V.G. Shavrov,Kh.Ya.  Mulyukov. Phys. of Solid State. 47(10), 1944(2005).
19.
R.R.  Mulyukov. Nanotechnologies in Russia. 2(7-8), 38(2007).
20.
R.R.  Mulyukov, A.A.  Nazarov, R.M.  Imayev. RussianPhysics J. 51(5), 492 (2008).
21.
I.M.  Safarov, A.V.  Korznikov, S.N.  Sergeev,S.V.  Gladkovskii, E.M.  Borodin. The Phys. of Met. andMetallogr. 113(10), 1001 (2012).
22.
Kh.Ya.  Mulyukov, I.Z.  Sharipov, S. S.  Absalyamov.Instruments and Experimental Techniques. 41(3), 433(1998) .
Cited by
1.
Мусабиров И.И., Сафаров И.М., Шарипов И.З., Мулюков Р.Р., Маширов А.В., Коледов В.В., Журнал радиоэлектроники, 11 (2015).
2.
Мусабиров И.И., Шарипов И.З., Мулюков Р.Р., Известия высших учебных заведений. Физика 58(6), 5-9 (2015).
3.
Корзников А.В., Сафаров И.М., Галеев Р.М., Сергеев С.Н., Потекаев А.И., Известия высших учебных заведений. Физика 58(7), 24-28 (2015).
4.
Muluykov R.R., Pshenichnuk A.I., Baimova Ju.A., Письма о материалах 5(4 (20)), 485-490 (2015).
5.
Musabirov I.I., Safarov I.M., Nagimov M.I., Sharipov I.Z., Mulyukov R.R., Koledov V.V., Mashirov A.V., Rudskoi A.I., Physics of the Solid State 58(8), 1605-1610 (2016).
6.
Валитов В.А., Ахунова А.Х., Галиева Э.В., Дмитриев С.В., Лутфуллин Р.Я., Жигалова М.Ю., Письма о материалах 7(2 (26)), 180-185 (2017).