Folding and crumpling of graphene under biaxial compression

J.A. Baimova, B. Liu, K. Zhou show affiliations and emails
Received 12 May 2014; Accepted 16 July 2014;
Citation: J.A. Baimova, B. Liu, K. Zhou. Folding and crumpling of graphene under biaxial compression. Lett. Mater., 2014, 4(2) 96-99
BibTex   https://doi.org/10.22226/2410-3535-2014-2-96-99

Abstract

 This paper studies the effect of biaxial compression on the mechanical properties of three-dimensional structure con-sist of six graphene flakes with interlayer distance two times bigger than this of graphite. The folding and crum-pling of graphene sheets under loading and unloading is studied. It is found that considered material cannot be elas-tically deformed even for low strain values. It is shown that wide ripples which appear at the first deformation stages transform to the sharp folds due to the van der Waals in-teraction between graphene sheets. The ridges and corners of folds have the highest potential energy and atoms with two nearest neighbors are concentrated in the edges of folds. Presented results can be applied to the investigations of crumpled grapheme properties, which is of high impor-tance for energy storage, electronics and composites.

References (41)

1. J. Yan, Y. Xiao, G. Ning, T. Wei and Z.Fan. RSC Advances.3, 2566 (2013).
2. L. Xiao, J. Damien, J. Luo, H.D. Jang, J. Huang, Z.He. Journalof Power Sources. 208, 187 (2012).
3. S. Cranford, M. Buehler. Phys.Rev. B. 84, 205451 (2011).
4. Y. Zhu, et al. Science. 329, 1537 (2011).
5. J. Luo, et al. ACS Nano. 5, 8943 (2011).
6. J. Miller, R. Outlaw, B. Holloway. Science. 329, 1637 (2010).
7. S. Stankovich, et al. Nature. 442, 282 (2006).
8. T. Ramanathan, et al. Nature Nanotech. 3, 327 (2008).
9. O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, S.T. Nguyen. Adv. Mater. 22, 4759 (2010).
10. J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M.J. Buehler, X. Zhao.Nat. Mater. 12, 321 (2013).
11. V. Rosato, M. Celino, G. Benedek, S. Gaito. Phys.Rev. B.60, 16928 (1999).
12. A. Lundin, B. Sundqvist. Phys.Rev. B. 53, 8329 (1996).
13. O.F. Yagafarov, E.L. Gromnitskaya, A.G. Lyapin, et al. J.of Phys.: Conference Series. 215, 012054 (2010).
14. A. Ansari, B. Motevalli, A. Montazeri, S. Ajori. Solid StateCommun. 151, 1141 (2011).
15. H. Sasakia, T. Hagia, K. Shintani. MRS Proceedings.(2010) mrsf12-1505-w10-27 (2013).
16. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang. Nano Letters.10, 4863 (2010).
17. X. Zhang, B. Wang, J. Sunarso, et al. Wiley InterdisciplinaryReviews: Energy and Environment. 1(3), 317 (2012).
18. A. Fasolino, J. Los, M. Katsnelson. Nat. Mater. 6, 858(2007).
19. W. Bao, F. Miao, Z. Chen, H. Zhang, et al. NatureNanotechnology. 4, 562 (2009).
20. J. Baimova, S. Dmitriev, K. Zhou. Phys. Status Solidi B.249 (7), 1393 (2012).
21. F. Scarpa, S. Adhikari, A.J. Gil, C. Remillat.Nanotechnology. 21, 125702 (2010).
22. K. Kim, Z. Lee, B. Malone, K. Chan, B. Aleman, et al.Phys.Rev. B. 83, 245433 (2011).
23. J. Meyer, A. Geim, M. Katsnelson, K. Novoselov, T. Booth, S. Roth. Nature. 446, 60 (2007).
24. R. Kaner, L. Viculis, J. Mack. Science. 299, 1361 (2003).
25. X. Shi, N. Pugno, H.Gao. Journal of Computational andTheoretical Nanoscience. 7, 1 (2010).
26. M. Zwierzycki. J. Phys. Condens. Matter. 26 (13), 135303(2014).
27. G. Gui, J. Zhong, Z.Ma. J. of Physics: Conference Series.402, 012004 (2012).
28. P. Partovi-Azar, N. Nafari, M. Reza Rahimi Tabar.Phys.Rev. B. 83, 165434 (2011).
29. S. Plimpton. J. Comput. Phys. 117, 1 (1995).
30. S. Stuart, A. Tutein, et al. J. Chem. Phys. 112, 6472 (2000).
31. Z. Xu, M. Buehler. Nanotechnology. 20, 185701 (2009).
32. C.D. Reddy, A. Ramasubramaniam, V.B. Shenoy, Y.W. Zhang, Appl. Phys. Lett. 94, 101904 (2009).
33. A.K. Singh, R.G. Hennig. Phys.Rev. B. 87, 094112 (2013).
34. H. Wang, M. Upmanyu. Phys.Rev. B. 86, 205411 (2012).
35. B. Liu, J.A. Baimova, S.V. Dmitriev, X. Wang, H. Zhu, K. Zhou.J. Phys. D-Appl. Phys. 46 (30), 305302 (2013).
36. E.A. Belenkov, V.A. Greshnyakov. Phys. Solid State. 55(8), 1754 (2013).
37. E.A. Belenkov, I.V. Shakhova. Phys. Solid State. 53 (11), 2385 (2011).
38. J.A. Baimova, B. Liu, S.V. Dmitriev, K. Zhou. pss (RRL).8, 336 (2014).
39. A. Lobkovsky, S. Gentges, H. Li, D. Morse, T.A. Witten.Science. 270, 1482 (1995).
40. T. Tallinen, J.A. Astrom, et al. Nat. Mater. 8, 25 (2009).
41. K. Matan, R.B. Williams, T.A. Witten, S.R. Nagel.Phys.Rev. Lett. 88, 076101 (2002).

Cited by (11)

1.
E. A. Korznikova, J. A. Baimova, S. V. Dmitriev. Russ Phys J. 58(6), 808 (2015). Crossref
2.
J. A. Baimova, S. V. Dmitriev. Russ Phys J. 58(6), 785 (2015). Crossref
3.
J. A. Baimova, R. T. Murzaev, I. P. Lobzenko, S. V. Dmitriev, K. Zhou. J. Exp. Theor. Phys. 122(5), 869 (2016). Crossref
4.
I. Papailias, M. Giannouri, A. Trapalis, N. Todorova, T. Giannakopoulou, N. Boukos, C. Lekakou. Applied Surface Science. 358, 84 (2015). Crossref
5.
Julia A. Baimova, Q. Fan, L. Zeng, Z. Wang, Sergey V. Dmitriev, X. Feng, K. Zhou. Journal of Nanomaterials. 2015, 1 (2015). Crossref
6.
M. Wang, J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, S. Nam. 2D Mater. 4(2), 022002 (2017). Crossref
7.
A.A. Kachina. Computational and Theoretical Chemistry. 1189, 112981 (2020). Crossref
8.
J.А. Baimova, L.Kh. Rysaeva, A.I. Rudskoy. Diamond and Related Materials. 81, 154 (2018). Crossref
9.
Konstantin P. Katin, Mikhail M. Maslov, Konstantin S. Krylov, Vadim D. Mur. Materials. 13(20), 4683 (2020). Crossref
10.
Liliya R. Safina, Karina A. Krylova, Ramil T. Murzaev, Julia A. Baimova, Radik R. Mulyukov. Materials. 14(9), 2098 (2021). Crossref
11.
Liliya R. Safina, Julia A. Baimova, Radik R. Mulyukov. Mech Adv Mater Mod Process. 5(1) (2019). Crossref

Similar papers