Description of mechanical properties of carbon nanotubes. Tube wall thickness problem. Size effect. Part 1

R.V. Goldstein1, V.A. Gorodtsov1, A.V. Chentsov1, S.V. Starikov2, V.V. Stegailov2, G.E. Norman2
1A.Yu. Ishlinsky Institute for Problems in Mechanics RAS, prospect Vernadskogo 101-1, 119526 Moscow
2Joint Institute of High Temperatures RAS, Izhorskaya 13, 125412 Moscow
Abstract
The classical theory of elasticity is used to describe the mechanical properties of nanotubes in many publications. However, necessary for applicability of the theory of elasticity conditions are not fulfilled in the case of single-walled carbon nanotubes (SWCNTs) and tubes with a small number of atomic layers in their walls. Therefore, in the first part of this article, we introduce the method of molecular dynamics and general energy analysis for the description of the generalized Young's modulus (with the dimension of the surface stiffness) and Poisson's ratio characterizing the uniaxial tension of SWCNTs. The strong dependence of the generalized characteristics of the studied nanoscales is their distinctive feature (size effect) as in the contrast to the similar concepts of the elasticity theory.
Here in Part 1 we discussed features of the basic approach and the using of the semi-empirical Tersoff-Brenner-Stewart potential. The main findings will be presented in Part 2.

Accepted: 14 February 2012
Views: 96   Downloads: 29
References
1.
S. Iijima. Nature (London) 354, 56 (1991).
2.
R. Tenne, L. Margulis, M. Genut, G. Hodcs. Nature (London) 360, 444 (1992).
3.
M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Nature(London) 381, 678 (1996).
4.
E.W. Wong, P.E. Sheeehen, C.M. Lieber. Science 277,1971 (1997).
5.
N.G. Chopra, A. Zettl. Solid State Commun. 105, 297(1998).
6.
A. Krishnan, E. Dujardin, T.N. Ebbesen, P.N. Yianilos,M.M.J. Treacy. Phys. Rev. B58, 14013 (1998).
7.
J. Muster, M. Burghard, S. Roth, C.S. Dusberg, E.Hernandez, A.J. Rubio. Vac. Sci. Technol. 16, 2796 (1998).
8.
O. Lourie, H.D. Wagner. J. Mater. Sci. 13, 2418 (1998).
9.
J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Baosa, A.J.Kulik, T. Stokli, N.A. Burnham, L. Forri. Phys. Rev. Lett.82, 944 (1999).
10.
J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik,L. Ferro, W. Benoit, L. Zuppiroli. Appl. Phys. A69, 225(1999).
11.
J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs,T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A.Burnham, L. Forro Adv. Mater. 11, 161 (1999).
12.
Z.W. Pan, S.S. Xie, L. Lu, B.H. Chang, L.F. Sun, W.Y. Zhou,G. Wang, D.L. Zhang. Appl. Phys. Lett. 74, 3152 (1999).
13.
P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer. Science.283, 15 (1999).
14.
D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T.Colbert, K.A. Smith, R.E. Smalley. Appl. Phys. Lett. 74,3803 (1999).
15.
Z.L. Wang, P. Poncharal, W.A. de Heer. J. Phys. Chem.Solids. 61, 1025 (2000).
16.
M.F. Yu, O. Lourie, M.J. Dyer, K. Maloni, T.F. Kelly, R.S.Ruoff. Science. 287, 637 (2000).
17.
M.F. Yu, B.S. Files, S. Arepally, R.S. Ruoff. Phys. Rev. Lett.84, 5552 (2000).
18.
M.F. Yu, B.I. Yakobson, R.S. Ruoff J. Phys. Chem. B104,8764 (2000).
19.
J.R. Wood, Q. Zhao, M.D. Frogley, E.R. Meurs, A.D. Prins,T. Peijs, D.J. Dunstan, H.D. Wagner. Phys. Rev. B62, 7571(2000)
20.
T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L.Liu, C.S. Jayanthi, M. Tang, S.Y. Wu. Nature (London).405, 769 (2000).
21.
C.A. Cooper, R.J. Young. Proc. SPIE 4098, 172 (2000).
22.
S. Xie, W. Li, Z. Pan, B. Chang, L. Sun. J. Phys. Chem.Solids. 61, 1153 (2000).
23.
C.A. Cooper, R.J. Young, M. Halsall. Composites A32,401 (2001).
24.
Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R.Dai, Z.W. Pan. Mater. Sci. Eng. C16, 3 (2001).
25.
Z.L. Wang, R.P. Gao, Z.W. Pan, Z.R. Dai. Adv. Eng. Mater.3, 657 (2001).
26.
B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W.Han, A. Zettl, R.O. Ritchie. Mater. Sci. Eng. A334, 173(2002).
27.
P.A. Williams, S.J. Papadikis, A.M. Patel, M.R. Falvo,S. Washbum, R. Superfine. Phys. Rev. Lett. 89, 255502(2002).
28.
P.A. Williams, S.J. Papadikis, A.M. Patel, M.R. Falvo, S.Washbum, R. Superfine. Appl. Phys. Lett. 82, 805 (2003).
29.
S. Cuenot, C. Freitigny, S. Demoustier-Champagne, B.Nysten. J. Appl. Phys. 93, 5650 (2003).
30.
H.E. Troiani, M. Viki-Yoshida, G.A. Camacho-Bragado,M.A.L. Marques, A. Rubio, J.A. Ascencio, M. Jose-Yacaman. Nano Letters 3, 751 (2003).
31.
P. Jaroenapibal, S.B. Chikkannanavar, D.E. Luzzi, S. Evoy.Appl. Phys. Lett. 85, 4328 (2004).
32.
P. Jaroenapibal, D.E. Luzzi, S. Evoy, S. Arepalli. J. Appl.Phys. 98, 044301 (2005).
33.
B. Lukic, J.W. Seo, E. Couteau, K. Lee, S. Gradecak, R.Berkecz, K. Htrnandi, S. Depleux, T. Cacciaguerra, F.Beguin, A. Fonseca, J.B. Nagi, G. Csanyi, A. Kis, A.J.Kulik, L. Forro. J. Appl. Phys. A80, 695 (2005).
34.
J. Gaillard, M. Skove, A.M. Rao. Appl. Phys. Lett. 86,233109 (2005).
35.
A.R. Hall, L. An, J. Liu, L. Vicci, M.R. Falvo, R. Superfine,S. Washburn. Phys. Rev. Lett. 96, 256102 (2006).
36.
M. Nakajiama, M. Arai, T. Fukuda. IEEE Trans. Nanotech.5, 243 (2006).
37.
K. Enomoto, S. Kitakata, T. Yasuhara, N. Ohtake, T.Kuzumaki, Y. Mitsuda. Appl. Phys. Lett. 88, 153115(2006).
38.
G. Guhados, W. Wan, X. Sun, J.L. Hutter. J. Appl. Phys.101, 033514 (2007).
39.
W. Ding, L. Calabri, K.M. Kohlhaas, X. Chen, D.A.Ditkin, R.S. Ruoff. Exper. Mech. 47, 25 (2007).
40.
K.T. Kashyap, R.G. Patil. Bull. Mater. Sci. 31, 185 (2008).
41.
X.L. Wei, Y. Liu, Q. Chen, M.S. Wang, L.M. Peng. Adv.Funct. Mater. 18, 1555 (2008).
42.
B. Bhushan, X. Ling. Phys. Rev. B78, 045429 (2008).
43.
A.K. Ojha, A. Materny. J. Raman Spectrosc. (2009).
44.
B.I. Yakobson, P. Avouris. Topics Appl. Phys. 80, 287(2001).
45.
D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff. Appl.Mech. Rev. 55, 495 (2002).
46.
R.S. Ruoff, D. Qian, W.K. Liu. C. R. Physique 4, 993(2003).
47.
D. Srivastava, C. Wei, K. Cho. Appl. Mech. Rev. 56, 215(2003).
48.
M.F. Yu. Trans. ASME, J. Eng. Mater. and Techn. 126, 271(2004).
49.
J.P. Salvetat, S. Bhattacharyya, R.B. Pipes. Nanosci. J.Nanotechn. 6, 1857 (2006).
50.
J.P. Salvetat, G. Desarmot, C. Gautier, P. Poulin. Lect.Notes Phys. 677, 439 Springer. Berlin, Heidelberg (2006).
51.
A.V. Eletskii. Phys. Usp. 50, 225 (2007).
52.
O.A. Shenderova, V.V. Zhirnov, D.W. Brenner. Crit. Rev.Solid State Mater. Sci. 27, 227 (2002).
53.
L.M. Peng, Z.L. Zang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G.Pettifor. Phys. Rev. Lett. 85, 3249 (2000).
54.
X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando.Phys. Rev. Lett. 92, 125502 (2004).
55.
E. Hernandez, C. Goze, P. Bernier, A. Rubio. Phys. Rev.Lett. 80, 4502 (1998).
56.
Z.T. Tu, Z.C. Ou-Yang. Phys. Rev. 65, 233407 (2002).
57.
T. Vodenitcharova, L.C. Zhang. Phys. Rev. B68, 165401(2003).
58.
M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, E.Hernandez. Phil. Trans. R. Soc. Lond. A362, 2065 (2004).
59.
Y. Huang, J. Wu, K.C. Hwang. Phys. Rev. B74, 245413(2006).
Cited by
1.
Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Doklady Physics 58(9), 400-404 (2013).
2.
Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С., Физическая мезомеханика 17(5), 5-14 (2014).
3.
Гольдштейн Р.В., Городцов В.А., Ченцов А.В., Стариков С.В., Стегайлов В.В., Норман Г.Э., Письма о материалах 2(4), 190-193 (2011).
4.
Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С., Физическая мезомеханика 19(1), 5-14 (2016).
5.
Баимова Ю.А., Фундаментальные проблемы современного материаловедения 10(4), 553-557 (2013).
6.
Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Physical Mesomechanics 18(3), 213-222 (2015).
7.
Goldshtein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A., Smart Materials and Structures 25(5), 054006 (2016).
8.
Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Physical Mesomechanics 19(3), 229-238 (2016).
9.
Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С., Письма о материалах 6(4 (24)), 249-252 (2016).