Shear induced ω-phase in titanium

A.P. Zhilyaev1, V.A. Popov2, A.R. Sharafutdinov3*, V.N. Danilenko2§
1Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001 Ufa, RF University of Southampton, SO17 1BJ Southampton, UK
2Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001 Ufa, RF
33nnovative Science and Technology Center “ISKRA”, Pushkina 81, 450077 Ufa, RF
Abstract
The metastable ω-phase of titanium, which has a nanocrystalline structure (with a crystallite size of 50 nm) was formed by severe plastic deformation (SPD), namely, torsion under high quasi-hydrostatic (6 GPa) pressure. It is shown that a short incubation period (300 seconds), more than 90% α-titanium is transformed into ω-phase, while the static load at the same time does not lead to phase transformation. TEM shows that the ω-phase is formed near the grain boundaries (GBs), the initial phase, which allows to hypothesize that the α → ω martensitic transformation occurs due to the increase of in-ternal stress near the grain boundaries, greatly exceeding the external load and is the channel of dissipation of plastic energy.
Received: 07 October 2011   Revised: 10 January 2012   Accepted: 07 October 2011
Views: 77   Downloads: 10
References
1.
ASM Handbook, Volume 3 “Alloy Phase Diagrams”, 1992.
2.
J.C. Jamieson. Science 140, 72 (1963).
3.
S.K. Sikka, Y.K. Vohra, R. Chidambaram, Progr. Mater.Sci. 27, 245 (1982).
4.
A.V. Dobromyslov, N.I. Taluts. Structure of zirconiumand its alloys. Yekaterinburg: IPM UD RAS (1997) 228 p.(in Russian).
5.
Y.K. Vohra and P.T. Spencer. Phys. Rev. Let. 86, 3068(2001).
6.
I.O. Bashkin, V.G. Tissen, M.V. Nefedova, E.G.Ponyatovsky. Physica C: Superconductivity 453, 12(2007).
7.
J.C. Jameson. Science 140, 72 (1963).
8.
G.I. Nosova. Phase Transformations in Titanium BasedAlloys, Moscow: Metallurgia (1968) (in Russian).
9.
V.A. Zilbershtein, G.I. Nosova, E.I. Estrin. Fiz. Met.Metalloved. 35, 584 (1973).
10.
V.A. Zilbershtein et al. Fiz. Met. Metalloved. 39, 445(1975).
11.
C.W. Greeff, D.R. Trinkle, R.C. Albers. J. Appl. Phys. 90,2221 (2001).
12.
Yu. Ivamisenko, A. Kilmametov, H. Rosner, R.Z. Valiev.Int. J. Mat. Res. (formely Z. Metallkunde) 99, 36 (2008).
13.
Y. Todaka, J. Sasaki, T. Moto, M. Umemoto, Scripta Mater.59, 615 (2008).
14.
M.T. Pérez-Prado, A.A. Gimazov, O.A. Ruano, M.E.Kassner, A.P. Zhilyaev. Scripta Mater. 58, 219 (2008).
15.
D. Errandonea, Y. Meng, M. Somayazulu, D. Häusermann.Physica B: Condensed Matter. 355, 116 (2005).
16.
P. Zhilyaev, T.G. Langdon. Prog. Mater. Sci., 53, 893(2008).
17.
R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881(2006).
18.
Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong.Scripta Mater. 39, 1221 (1998).
19.
R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov. Mater. Sci.Eng. A168, 141 (1993).
20.
P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, T.G.Langdon. Scripta Mater. 44, 2753 (2001).
21.
M. Ferrari and L. Lutterotti. J. Appl. Phys. 76, 7246 (1994).
22.
http://www.ing.unitn.it/~maud/
23.
A.P. Zhilyaev, K. Ohishi, T.G. Langdon, T.R. McNelley.Mater. Sci. Eng. A410-411, 277 (2005).
24.
A.R. Kilmametov, R.Z. Valiev, I.V. Alexandrov. Solid StatePhenom. 114, 329 (2006).
Cited by
1.
Хлебникова Ю.В., Егорова Л.Ю., Пилюгин В.П., Суаридзе Т.Р., Пацелов А.М., Журнал технической физики 85(7), 60-68 (2015).
2.
Пилюгин В.П., Хлебникова Ю.В., Егорова Л.Ю., Суаридзе Т.Р., Реснина Н.Н., Пацелов А.М., Физика металлов и металловедение 116(12), 1263 (2015).