Shear induced ω-phase in titanium

A.P. Zhilyaev, V.A. Popov, A.R. Sharafutdinov, V.N. Danilenko show affiliations and emails
Received 07 October 2011; Accepted 07 October 2011;
This paper is written in Russian
Citation: A.P. Zhilyaev, V.A. Popov, A.R. Sharafutdinov, V.N. Danilenko. Shear induced ω-phase in titanium. Lett. Mater., 2011, 1(4) 203-207
BibTex   https://doi.org/10.22226/2410-3535-2011-4-203-207

Abstract

The metastable ω-phase of titanium, which has a nanocrystalline structure (with a crystallite size of 50 nm) was formed by severe plastic deformation (SPD), namely, torsion under high quasi-hydrostatic (6 GPa) pressure. It is shown that a short incubation period (300 seconds), more than 90% α-titanium is transformed into ω-phase, while the static load at the same time does not lead to phase transformation. TEM shows that the ω-phase is formed near the grain boundaries (GBs), the initial phase, which allows to hypothesize that the α → ω martensitic transformation occurs due to the increase of in-ternal stress near the grain boundaries, greatly exceeding the external load and is the channel of dissipation of plastic energy.

References (24)

1. ASM Handbook, Volume 3 “Alloy Phase Diagrams”, 1992.
2. J.C. Jamieson. Science 140, 72 (1963).
3. S.K. Sikka, Y.K. Vohra, R. Chidambaram, Progr. Mater.Sci. 27, 245 (1982).
4. A.V. Dobromyslov, N.I. Taluts. Structure of zirconiumand its alloys. Yekaterinburg: IPM UD RAS (1997) 228 p.(in Russian).
5. Y.K. Vohra and P.T. Spencer. Phys. Rev. Let. 86, 3068(2001).
6. I.O. Bashkin, V.G. Tissen, M.V. Nefedova, E.G.Ponyatovsky. Physica C: Superconductivity 453, 12(2007).
7. J.C. Jameson. Science 140, 72 (1963).
8. G.I. Nosova. Phase Transformations in Titanium BasedAlloys, Moscow: Metallurgia (1968) (in Russian).
9. V.A. Zilbershtein, G.I. Nosova, E.I. Estrin. Fiz. Met.Metalloved. 35, 584 (1973).
10. V.A. Zilbershtein et al. Fiz. Met. Metalloved. 39, 445(1975).
11. C.W. Greeff, D.R. Trinkle, R.C. Albers. J. Appl. Phys. 90, 2221 (2001).
12. Yu. Ivamisenko, A. Kilmametov, H. Rosner, R.Z. Valiev.Int. J. Mat. Res. (formely Z. Metallkunde) 99, 36 (2008).
13. Y. Todaka, J. Sasaki, T. Moto, M. Umemoto, Scripta Mater.59, 615 (2008).
14. M.T. Pérez-Prado, A.A. Gimazov, O.A. Ruano, M.E.Kassner, A.P. Zhilyaev. Scripta Mater. 58, 219 (2008).
15. D. Errandonea, Y. Meng, M. Somayazulu, D. Häusermann.Physica B: Condensed Matter. 355, 116 (2005).
16. P. Zhilyaev, T.G. Langdon. Prog. Mater. Sci., 53, 893(2008).
17. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881(2006).
18. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong.Scripta Mater. 39, 1221 (1998).
19. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov. Mater. Sci.Eng. A168, 141 (1993).
20. P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev, T.G.Langdon. Scripta Mater. 44, 2753 (2001).
21. M. Ferrari and L. Lutterotti. J. Appl. Phys. 76, 7246 (1994).
22. http://www.ing.unitn.it/~maud/.
23. A.P. Zhilyaev, K. Ohishi, T.G. Langdon, T.R. McNelley.Mater. Sci. Eng. A410-411, 277 (2005).
24. A.R. Kilmametov, R.Z. Valiev, I.V. Alexandrov. Solid StatePhenom. 114, 329 (2006).

Cited by (4)

1.
A. Zhilyaev. LOM. 9(1), 142 (2019). Crossref
2.
V. I. Savenko, L. I. Kuksenova, R. R. Khasbiullin, A. A. Shiryaev. Metallofiz. Noveishie Tekhnol. 42(6), 853 (2020). Crossref
3.
A. Panin, A. Dmitriev, A. Nikonov, M. Kazachenok, O. Perevalova, E. Sklyarova. Metals. 11(4), 562 (2021). Crossref
4.
L. Yu. Egorova, Yu. V. Khlebnikova, V. P. Pilyugin, N. N. Resnina. Phys. Metals Metallogr. 123(5), 482 (2022). Crossref

Similar papers