Experimental investigation of silicon carbide rod-like structures obtained by drying droplet and autoclave methods

A. Tuchin1, D. Zhukalin1, L. Bityutskaya1, A.V. Kalashnikov1
1Voronezh State University, Universitetskaya pl. 1, 394006, Voronezh, Russia
Abstract
Preparation of silicon carbide by traditional methods involves considerable energy and economic costs, so the search for alternative technologies of the synthesis is of the great interest. Carbon nanomaterials are actively investigated as a carbon source to reduce the temperature of synthesis. This paper presents the results of an experimental study of the morphology, elemental composition and crystal structure of structures obtained from colloidal solutions of short (l ~ 500 nm) carbon nanotubes and nano-sized (~ 7 nm) amorphous silicon dioxide by drying droplet and autoclave methods. The formation of rod-like structures was revealed at certain critical concentrations of initial components. It was found that the dynamic conditions of the drying droplets determine a synthesis of rod-like structures at room temperature at 2-3 times larger than at the autoclave at a temperature of about 180 °C. The elemental analysis of samples showed a high percentage of carbon and silicon atoms. The presence of the polytype 4-H SiC phase in the rod-like structures was revealed by the X-ray diffractometry. A model of the active charged center of short carbon nanotubes that provides the possibility of Si-C, Si-O-C and C-Si-O-C covalent bonds formation was offered based on numerical calculations. The drying droplet method is suitable for a quick (10-20 minutes) local synthesis of a small amount of rod-like structures with a minimum energy consumption. The autoclave allows to synthesize gram quantities for a long time (a few days). Both methods are low temperature in the comparison with the widely used in practice.
Received: 20 July 2016   Revised: 12 October 2016   Accepted: 31 October 2016
Views: 61   Downloads: 18
References
1.
V. Vojtovich, A. Gordeev, A. Dumanevich. Silovaya ehlektronika. 5, 4 – 10 (2010). (in Russian) [В. Войтович, А. Гордеев, А. Думаневич. Силовая электроника. 5, 4 – 10 (2010)].
2.
I. SHahnovich. EHlektronika: Nauka, Tekhnologiya, Biznes. 4, 12 – 18 (2005). (in Russian) [И. Шахнович. Электроника: Наука, Технология, Бизнес. 4, 12 – 18 (2005)].
3.
O. A. Ageev, A. E. Belyaev, N. S. Boltovec, et al. Karbid kremniya: tekhnologiya, svojstva, primenenie. Har’kov, ISMA. (2010) 532 p. (in Russian) [О. А. Агеев, А. Е. Беляев, Н. С. Болтовец и др. Карбид кремния: технология, свойства, применение. Харьков. ИСМА. (2010) 532 с.
4.
S. N. Gusev, S. Yu. Zubkov, S. A. Levchuk, and M. V. Sapozhnikov. Journal of Surface Investigation. Xray, Synchrotron and Neutron Techniques. 4 (3), 374 – 378 (2010). (in Russian) [С. Н. Гусев, С. Ю. Зубков, С. А. Левчук, М. В. Сапожников. Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 5, 10 – 17 (2010)].
5.
A. V. Semenov, V. M. Puzikov, E. P. Golubova, et al. Semiconductors. 43 (5), 685 – 689 (2009). (in Russian) [А. В. Семенов, В. М. Пузиков, Е. П. Голубова и др. Физика и техника полупроводников. 43 (5), 714 – 718 (2009)].
6.
D. O. Moskovskih. Poluchenie submikronnogo poroshka karbida kremniya i nanostrukturirovannoj keramiki na ego osnove: Dissertacija na soiskanie stepeni kandidata tehnicheskih nauk. Moskva. 2015. 166 p. (in Russian) [Д. О. Московских Получение субмикронного порошка карбида кремния и наноструктурированной керамики на его основе: дисс. канд. техн. наук. Москва. 2015. 166 с.].
7.
V. A. Soltamov, D. O. Tolmachev, I. V. Il’in, et al. Physics of the Solid State. 57 (5), 891 – 899 (2015). (in Russian) [В. А. Солтамов, Д. О. Толмачев, И. В. Ильин и др. ФТТ. 57 (5), 877 – 885. (2015)].
8.
S. A. Kukushkin, A. V. Osipov. Journal of Applied Physics. 113, 024909 (2013). DOI: http://dx.doi.org / 10.1063 / 1.4773343
9.
S. A. Kukushkin, A. V. Osipov, N. A. Feoktistov. Physics of the Solid State. 56 (8), 1507 – 1535 (2014). (in Russian) [С. А. Кукушкин, А. В. Осипов, Н. А. Феоктистов. ФТТ 56 (8), 1457 – 1485 (2014)].
10.
S. A. Kukushkin, A. V. Osipov. Journal of Physics D: Applied Physics. 47 (13), 313001 (2014). DOI: http://dx.doi.org / 10.1088 / 0022 – 3727 / 47 / 31 / 313001
11.
S. A. Kukushkin, A. V. Osipov. Physics of the Solid State. 58 (4), 747 – 751. (2016). (in Russian) [С. А. Кукушкин, А. В. Осипов. ФТТ. 58 (4), 725 (2016)].
12.
L. Wang, H. Wada, L. F. Allard. Journal of Materials Research. 7 (1), 148 – 163 (1992). DOI: http://dx.doi.org / 10.1017 / S0884291400096813.
13.
W.‑S. Seo, K. Koumoto. Journal of the American Ceramic Society. 79 (7), 1777 – 1782 (1996). DOI: 10.1111 / j.1151 – 2916.1996.tb07995.x
14.
Y. J. Wu, W. Qin, Z. X. Yang, et al. Journal of Materials Science. 39 (16), 5563 – 5565 (2004).
15.
J. Wei, K.‑Z. Li, H.‑J. Li, et al. Materials Chemistry and Physics. 95 (1), 140 – 144 (2006). DOI:10.1016 / j.matchemphys.2005.05.032
16.
Y. J. Wu, J. S. Wu, W. Qin, et al. Materials Letters. 58 (17–18), 2295 – 2298 (2004). DOI:10.1016 / j.matlet.2004.03.002
17.
F.‑L. Wang, L.‑Y. Zhang, Y.‑F. Zhang. Nanoscale Research Letters. 4, 153 – 156 (2009). DOI: 10.1007 / s11671‑008‑9216‑3
18.
J.‑S. Lee, Y.‑K. Byeun, S.‑H. Lee, and S.‑C. Choi. Journal of Alloys and Compounds. 456 (1–2), 257 – 263 (2008). DOI: 10.1016 / j.jallcom.2007.02.010
19.
M. Mukherjee. Silicon Carbide — Materials, Processing and Applications in Electronic Devices. InTech. 2011. 558 p. DOI: 10.5772 / 852.
20.
J. Guo, A. Sun, X. Chen, et al. Electrochimica Acta. 56 (11), 3981 – 3987 (2011). DOI: 10.1016 / j.electacta.2011.02.014.
21.
D. A. Zhukalin, A. V. Tuchin, D. L. Goloshchapov, and L. A. Bityutskaya. Technical Physics Letters. 41 (2), 157 – 159 (2015). (in Russian) [Д. А. Жукалин, А. В. Тучин, Д. Л. Голощапов, Л. А. Битюцкая. Письма ЖТФ. 41 (4), 1 – 6 (2015)].
22.
A. V. Tuchin, V. A. Tyapkina, L. A. Bityuckaya. Kondensirovannye sredy i mezhfaznye granicy. 17 (4), 552 – 559 (2015). (in Russian) [А. В, Тучин, В. А. Тяпкина, Л. А. Битюцкая. Конденсированные среды и межфазные границы. 17 (4), 552 – 559 (2015)].
23.
V. G. Il’ves, M. G. Zuev, S. Yu. Sokovnin, A. M. Murzakaev. Physics of the Solid State. 57 (12), 2512 – 2518 (2015). (in Russian) [В. Г. Ильвес, М. Г. Зуев, С. Ю. Соковнин, А. М. Мурзакаев. ФТТ. 57 (12), 2439 – 2445 (2015)].
24.
L. Oakes, A. Westover, J. W. Mares, et al. Scientific Reports. 3. 3020 (7) (2013). DOI: 10.1038 / srep03020.
25.
E. Sun, F. — H. Su, Y. — T. Shih, et al. Nanotechnology. 20 (44). 445202 (2009). DOI: http://dx.doi.org / 10.1088 / 0957 – 4484 / 20 / 44 / 445202.
26.
T. A. Yakhno, V. G. Yakhno. Technical Physics. 54 (8), 1219 – 1227 (2009). (in Russian) [Т. А. Яхно, В. Г. Яхно. ЖТФ. 79 (8), 133 – 141 (2009)].
27.
B. Su, S. Wang, Y. Song, and L. Jiang. Nano Research. 4 (3), 266 – 273 (2011). DOI: 10.1007 / s12274‑010‑0078‑5.
28.
R. Duggal, F. Hussain, M. Pasquali. Advanced Materials. 18 (1), 29 – 34 (2006). DOI: 10.1002 / adma.200690004.
29.
T. A. Yakhno, O. A. Sanina, M. G. Volovik, et al. Technical Physics. 57 (7), 915 – 922 (2012). (in Russian) [Т. А. Яхно, О. А. Санина, М. Г. Воловик и др. ЖТФ. 82 (7), 22 – 29 (2012)].
30.
T. A. Yakhno, V. V. Kazakov, O. A. Sanina, et al. Technical Physics. 55 (7), 929 – 935 (2010). (in Russian) [Т. А. Яхно, В. В. Казаков, О. А. Санина и др. ЖТФ. 80 (7), 17 – 23 (2010)].
31.
L. A. Bityuckaya, D. A. ZHukalin, A. V. Tuchin, et al. Kondensirovannye sredy i mezhfaznye granicy. 16 (4), 425 – 430 (2014). (in Russian) [Л. А. Битюцкая, Д. А. Жукалин, А. В. Тучин и др. Конденсированные среды и межфазные границы. 16 (4), 425 – 430 (2014)].
32.
D. A. ZHukalin, A. V. Tuchin, L. A. Bityuckaya, E. N. Bormontov. Vestnik VGU «Fizika. Matematika». 3, 5 – 20 (2014). (in Russian) [Д. А. Жукалин, А. В. Тучин, Л. А. Битюцкая, Е. Н. Бормонтов. Вестник ВГУ «Физика. Математика». 3, 5 – 20 (2014)].
33.
D. Zhukalin, A. Tuchin, D. Goloshchapov, L. Bityutskaya, F. Roessner. Kondensirovannye sredy i mezhfaznye granicy. 16 (4), 431 – 438 (2014). (in Russian) [D. Zhukalin, A. Tuchin, D. Goloshchapov, L. Bityutskaya, F. Roessner. Конденсированные среды и межфазные границы. 16 (4), 431 – 438 (2014)].
34.
O. P. Gus’kova, V. M. Vorotyntsev, N. D. Abrosimova, et al. Physics of the Solid State. 57 (11). 2164 – 2169 (2015) (in Russian) [О. П. Гуськова, В. М. Воротынцев, Н. Д. Абросимова и др. ФТТ. 57 (11). 2106 – 2111 (2015)].
35.
A. I. Kirillov, A. M. Obyedkov, V. A. Yegorov, et al. Nanotechnics. 1 (25), 72 – 77 (2011). (in Russian) [А. И. Кириллов, А. М. Объедков, В. А. Егоров и др. Нанотехника. 1 (25), 72 – 77 (2011)].
36.
V. N. Sivkov, A. M. Ob”edkov, O. V. Petrova, et al. Physics of the Solid State. 57 (1), 197 – 204 (2015). (in Russian) [В. Н. Сивков, А. М. Объедков, О. В. Петрова и др. ФТТ. 57 (1), 185 – 191 (2015)].
37.
V. V. Bolotov, S. N. Nesov, P. M. Korusenko, S. N. Povoroznyuk. Physics of the Solid State. 56 (9), 1899 – 1903 (2014). (in Russian) [В. В. Болотов, С. Н. Несов, П. М. Корусенко, С. Н. Поворознюк. ФТТ. 56 (9), 1834 – 1838 (2014)].