The ultrafine-grained structure, texture and mechanical properties of low carbon steel obtained by various methods of plastic deformation

I.M. Safarov1, A.V. Korznikov1, R.M. Galeyev1, S.N. Sergeev2, S.V. Gladkovsky3, D.A. Dvoynikov3, I.Y. Litovchenko4,5
1Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001 Ufa
2Institute for Metals Superplasticity Problems of Russian Academy of Sciences, 39, Khalturin Str., Ufa, 450001,Russia
3Institute of Engineering Science of the Urals Branch RAS, Komsomolskaya St. 34, 620049 Yekaterinburg
4National Research Tomsk State University, 36 Lenin Ave., 634050, Tomsk
5Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademichesky Ave., 634050, Tomsk
Abstract
The paper reports on the investigation of the effect of various methods of plastic deformation on the structure, texture and mechanical properties of low carbon 12GBA steel. It is found that multiple isothermal forging results in formation of equiaxed ultrafine-grained (UFG) structure with a uniform distribution of the second phase, the size of which ranges from 50 to 500 nm. The warm rolling leads to formation of UFG fibrous structure type with presence of carbides sized less than 100 nm. X-ray analysis revealed that both deformation schemes result in formation of two-component (110) [112] and (111) [123] texture. Low carbon steel 12GBA with fibrous UFG structure is characterized by high strength, with satisfactory ductility and toughness values similar to ones in case of the coarse-grained (CG) structure. Equiaxed UFG structure steels possess 2 times higher values of fracture toughness and 1.5 times increased tensile strength by comparison with the CG structured steel. Internal strains relaxation annealing of UFG fibrous structure leads to second phase coagulation retaining the two component texture and insignificant change of mechanical properties. It was shown that UFG fibrous steels retains its high level due to 1.5-2 times increase of crack initiation work. Considerable growth of fracture toughness in equaxed UFG steel takes place due to 7 times increase of crack initiation and propagation work.
Received: 16 March 2016   Revised: 27 April 2016   Accepted: 28 April 2016
Views: 144   Downloads: 52
References
1.
S.V. Gladkovskii, T.A. Trunina, E.A. Kokovikhin, S.V. Smirnova, I.S. Kamantsev, A.V. Gorbunov, Metal Science and Heat Treatment. (in Russian) [С.В. Гладковский, Т.А. Трутина, Е.А. Коковихин, С.В. Смирнова, И.С. Каманцев, А.В. Горбунов. Металловедение и термическая обработка металлов. 1(691), 3-7 (2013)]
2.
I.I. Musabirov, R.R. Mulyukov, I.Z. Sharipov. Russian Physics Journal 58 (6), 5-9 (2015) (in Russian) [И.И. Мусабиров, Р.Р. Мулюков, И.З. Шарипов. Известия высших учебных заведений. Физика. 58 (6), 5-9 (2015)]
3.
V.M. Farber, O.V. Selivanova, A.B. Arabey, O.N. Polukhina, A.S. Mamatnazarov. Metal Science and Heat Treatment. 8 (710), 53-55 (2014) (in Russian) [В.М. Фарбер, О.В. Селиванова, А.Б. Арабей, О.Н. Полухина, А.С. Маматназаров. Металловедение и термическая обработка металлов. 8(710), 53-55 (2014)]
4.
V.M. Schastlivtsev, T.I. Tabatchikova, I.L. Yakovleva, S.Y. Del’gado Reina, S.A. Golosienko, U.A. Pazilova, E.I. Khlusova. Phys. Met. Metallogr. 116(2), 199-209 (2015). (in Russian) [В.М. Счастливцев, Т.И. Табатчикова, И.Л. Яковлева, С.Ю. Дельгадо Рейна, С.А. Голосиенко, У.А. Позилова, Е.И. Хлусова. Физика металлов и металловедение. 116(2), 199-209 (2015).] DOI: 10.7868/S0015323015020102.
5.
M.A. Smirnov, I. Yu. Pyshmintsev, O.V. Varnak, A.N. Maltseva. Russian metallurgy (Metally). 8, 9-15 (2014). (in Russian) [М.А. Смирнов, И.Ю. Пышминцев, О.В. Варнак, А.Н. Мальцева. Деформация и разрушение материалов. 8, 9-15 (2014).]
6.
G.G. Maier, E.G. Astafurova, E.V. Naydenkin, H.J. Maier, G.I. Raab, P.D. Odessky, S.V. Dobatkin. Mater. Sci. and Eng.:A. 581, 104 (2015). DOI: 10.1016/j.msea.2013.05.075.
7.
E.G. Astafurova, G.G. Maier, V.S. Koshovkina, E.V. Melnikov, E.V. Naydenkin, A. Smirnov, V.A. Bataev, P.D. Odessky, S.V. Dobatkin. Letters on Materials 5 (4), 432 (2015).
8.
R.Z. Valiev, A.V. Ganeev, G.V. Klevtsov, N.A. Klevtsova, V.M. Kushnarenko. Steel in Translation. 44 (6), 418 (2014).
9.
R.Z. Valiev, G.V. Klevtsov, N.A. Klevtsova, M.V. Fesenyuk, M.R. Kashapov, A.G. Raab, M.V. Karavaeva, A.V. Ganeev. Russian metallurgy (Metally). 1, 21 (2013). (in Russian) [Р.З. Валиев, Г.В. Клевцов, Н.А. Клевцова, М.В. Фесенюк, М.Р. Кашапов, А.Г. Рааб, М.В. Караваева, А.В. Ганеев. Деформация и разрушение материалов. 1, 21 (2013).]
10.
S.N. Sergeev, I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.V. Gladkovskii, D.I. Dvoynikov. Letters on Materials. 5(1), 48-51 (2015). (in Russian) [С.Н. Сергеев, И.М. Сафаров, А.В. Корзников, Р.М. Галеев, С.В. Гладковский, Д.А. Двойников. Письма о материалах, 5(1), 48-51 (2015).]
11.
I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.N. Sergeev, S.V. Gladkovskii, I.Yu. Doklady Physics. 115(3), 315-323 (2016). (in Russian) [И.М. Сафаров, А.В. Корзников, Р.М. Галеев, С.Н. Сергеев, С.В. Гладковский, И.Ю. Пышминцев. Доклады Академии Наук. 466(3), 289-292 (2016).] DOI: 10.7868/S0869565216030117
12.
I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.N. Sergeev, S.V. Gladkovskii, E.M. Borodin. I.Yu. Pyshmintsev. Phys. Met. Metallogr. 115(3), 315-323 (2014). (in Russian) [И.М. Сафаров, А.В. Корзников, Р.М. Галеев, С.Н. Сергеев, С.В. Гладковский, Е.М. Бородин, И.Ю. Пышминцев. Физика металлов и металловедение. 115(3), 315-323 (2014).] DOI: 10.7868/S0015323014030103.
13.
F. Utyashev. G.I. Raab. The deformation methods of obtaining and processing of ultrafine-grained and nanostructured materials. Ufa. (2013) 376 p. (in Russian) [Ф.З. Утяшев, Г.И. Рааб. Деформационные методы получения и обработки ультрамелкозернистых и наноструктурных материалов // Уфа: Гилем. НИК Башк. энцикл. 2013. 376 с.]
14.
A.A. Nazarov, R.R. Mulyukov. Nanostructured Materials. Chapter 22. In: Handbook of Nanoscience, Engineering, and Technology, Ed. Goddard W., Brenner D., Lyshevski S., Iafrate G., Boca Raton, London, New York, Washington, D.C.: CRC Press. 2002.
15.
L.R. Botvina. Destruction: kinetics, mechanisms, general laws. M: Science, (2008) 334 p. (in Russian) [Л.Р. Ботвина. Разрушение: Кинетика, механизмы, общие закономерности. М: Наука, 2008. 334 с.]